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24 August 2015

Nonhomogeneous Equations

We ended last time talking about the method of undetermined coe�cients. This is a method to �nd a
solution to an equation of the form

ay′′ + by′ + cy = g(t)

It is a guess-and-check method in which we guess the form of a solution based on the form of g(t), but
leave the coe�cients undetermined. Then we plug in the guess and get a system of equations that the
undetermined coe�cients must satisfy, and solve this system to get the right numbers.

The method gets messy in two ways - �rst, in �guring out exactly what kind of solution to guess,
and second, in doing the di�erentiation and algebra to solve for the coe�cients. The second issue is not
terribly deep, and if you ever get stuck, a computer can do most of the work for you. However, the �rst
issue can be quite subtle, so I'd like to expand on the logic you should use in �guring out a good guess.

So far, we've seen cases where g(t) is an exponential, a trig function, and a polynomial. The guess
in each of these cases is pretty straightforward - just duplicate the same form as g(t), but include both
sine and cosine if g(t) is either one.

A natural next step is to consider the case that g(t) is a product of two of the basic kinds of functions
we've considered so far. Let's consider an example

y′′ − 3y′ − 4y = −8et cos(2t)

What would be a good guess in this case? Well, based on experience with the product rule, we
know that a term like et cos(2t) will become et times a linear combination of cos(2t) and sin(2t) upon
di�erentiation. So, we should make a guess of Y = et(A cos(2t) + B sin(2t)). Doing the computations
we get

Y ′ = et ((−2A+B) sin(2t) + (A+ 2B) cos(2t))

Y ′′ = et ((−4A− 3B) sin(2t) + (4B − 3A) cos(2t))

Plugging these into the left-hand side of the ODE and collecting terms gives

Y ′′ − 3Y ′ − 4Y = et ((−4A− 3B + 6A− 3B − 4B) sin(2t) + (4B − 3A− 3A− 6B − 4A) cos(2t))

= et ((2A− 10B) sin(2t) + (−2B − 10A) cos(2t))
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Now we can set this equal to −8et cos(2t), and get the system of equations

2A− 10B = 0

−10A− 2B = −8

which we solve to get A = 10
13 and B = 2

13 , so we've arrived at a solution

Y (t) =
10

13
et cos(2t) +

2

13
et sin(2t)

The same logic applies to products of eponentials with polynomials, trig functions with polynomials,
or products of all three (though the algebra quickly begins to get quite nasty). The last real subtlety
that occurs with undetermined coe�cients is the case when your guess includes a solution to the
corresponding homogeneous equation. Our example for this was

y′′ − 3y′ − 4y = e−t

Guessing Y = Ae−t and trying to solve for A gives us 0A = 1, which clearly has no solution. The �x
I told you works is to just multiply by t, and guess Y = Ate−t instead. This seems pretty arbitrary at
�rst, so I want to motivate it with a simpler example that we know how to solve analytically.

Consider the equation
y′ + y = e−t

This is a nonhomogeneous �rst order ODE with constant coe�cients. If we try to apply the method of
undetermined coe�cients, we'd guess Y = Ae−t, and again arrive at 0A = 1. Fortunately, we can solve
this equation using an integrating factor. The integrating factor here is exp(

´
p(t)dt) = et, so we get

d

dt

(
ety
)
= ete−t = 1

Integrating, we get
ety = t+ c =⇒ y = te−t + ce−t

where c is a constant of integration. Notice that the expression ce−t is the general solution to the
corresponding homogeneous equation, y′ + y = 0, and that te−t is a solution to the nonhomogeneous
equation y′ + y = e−t. So, in this case, we see that it works to simply multiply by t.

To see that this is pretty sensible in general, consider solving the equation ay′′+ by′+ cy = g, where
g is a solution to ay′′ + by′ + cy = 0, and let Y = tg. Then

aY ′′ + bY ′ + cY = t(ag′′ + bg′ + cg) + 2ag′ + bg

= 2ag′ + bg

So heuristically, the t factor dropped out upon being plugged into the left-hand side of the equation,
leaving something that can be comparable to g.
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In any case, this is all to say that multiplying by t is, in this case, an e�ective �patch� to use
when some part of your guess is a solution to the homogeneous equation, and leads to your system of
undetermined coe�eicnets being unsolvable. I refer again to the table:

g(t) Guess at Y (t)

Pn(t) = ant
n + · · ·+ a1t+ a0 ts (Ant

n + · · ·+A1t+A0)

Pn(t)e
at ts (Ant

n + · · ·+A1t+A0) e
at

Pn(t)e
at

{
sin bt

cos bt
tseat [(Ant

n + · · ·+A1t+A0) cos bt+ (Bnt
n + · · ·+B1t+B0) sin bt]

where

Pn(t) denotes a polynomial of degree n, and s is the smallest integer (either 0, 1, or 2) that ensures no
part of Y (t) is a solution to the corresponding homogeneous equation.

Finally a word about sums, that I hope will be fairly intuitive. Consider the equation

y′′ − 3y′ − 4y = 3e2t + 2 sin t− 8et cos 2t

What in the world could we guess as a solution to this beast? Well, let's take a step back. If Y1 is a
solution to

y′′ − 3y′ − 4y = 3e2t

and Y2 is a solution to
y′′ − 3y′ − 4y = 2 sin t

and Y3 is a solution to
y′′ − 3y′ − 4y = −8et cos 2t

then Y = Y1 + Y2 + Y3 is a solution to

y′′ − 3y′ − 4y = 3e2t + 2 sin t− 8et cos 2t

by our old, dependable friend, linearity.
So, to summarize, undetermined coe�cients is a method that can deal with solving nonhomogeneous,

second order ODEs with constant coe�cients, whose nonhomogeneous term is anything that can be
built from exponentials, trig functions, and polynomials by addition and/or multiplication.

Forced Oscillations

Here's where it gets interesting. To see what the physical meaning of a nonhomogeneous equation might
be, let's think again about a mass on a spring, possibly with damping. The equation of motion is

F = ma

where a = d2y
dt2

is acceleration, and there is a damping force −bdydt and a spring force −ky. In the past
we stopped here, and considered what happened when we kick the mass (i.e. set initial conditions) and
let it go. Now, though, we have the tools to describe what happens when we can actively push the mass
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in a time-dependent way. If we denote by Fext(t) the external force on the mass at time t, our ODE
becomes

m
d2y

dt2
= −bdy

dt
− ky + Fext(t)

or

m
d2y

dt2
+ b

dy

dt
+ ky = Fext(t)

so the motion y(t) is exactly a solution to a nonhomogeneous, linear, second order ODE with constant
coe�cients! LET'S GO.

The most interesting phenomenon that can happen here is called resonance (e.g. Galloping Gertie).
This is how swings work. The basic idea is that when you apply a periodic force to an oscillating thing at
the same frequency at which it would naturally oscillate, the oscillations steadily grow in amplitude. A
hugely important example is called aerodynamic �utter, in which resonance happens in airplane wings.
Aerodynamic �utter is a very bad thing. There is, in fact, a lot of work done in mechanical design to
control the natural vibration frequencies of designed objects so that they resist being resonantly driven.

Let's see what that means. To start, we'll consider no damping, and choose a mass m = 1 and
spring constant k = 1. If the mass were not driven, its motion y(t) would obey the ODE

y′′ + y = 0

So clearly, y = c1 cos(t) + c2 sin(t). Now, what if we drive it with a sinusoidal force? That is, set
Fext(t) = sin(t). Then we have

y′′ + y = sin(t)

Let's look for a solution using the method of undetermined coe�cients. As we saw, we can't use
Y = A sin(t) +B cos(t) because we'd get 0A = 1 = 0B. So let's try Y = t(A sin(t) +B cos(t)). Then

Y ′ = t(A cos t−B sin t) +A sin t+B cos t

= (At+B) cos t+ (A−Bt) sin t

Y ′′ = A cos t− (At+B) sin t−B sin t+ (A−Bt) cos t

= (2A−Bt) cos t+ (−2B −At) sin t

so
Y ′′ + Y = −2B sin t+ 2A cos t

setting this equal to sin t gives B = −1
2 and A = 0, so our solution is Y = −1

2 t cos t. Notice that the
amplitude of this function grows without bound as t→∞! Resonance! More on this next time.

Variation of Parameters

Variation of Parameters is another method to �nd a solution to a nonhomogeneous equation. It's
very di�erent in �avor to undetermined coe�cients, in that it's completely deductive - very little is
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guesswork. The only drawback is that we need to begin with a fundamental set of solutions to the
corresponding homogeneous equation.

The way it works is this. We have an ODE

y′′ + p(t)y′ + q(t)y = g(t)

which is second order, linear, and nonhomogeneous. Say {y1, y2} is a fundamental set of solutions of
the CHE

y′′ + p(t)y′ + q(t)y = 0

So for any c1, c2, we have y = c1y1 + c2y2 solves the CHE. Now we'll pull a trick similar to what
happened in �reduction of order�. We guess that instead of taking c1 and c2 to be constant, we let them
depend on time. That is, we consider a function

y(t) = u1(t)y1(t) + u2(t)y2(t)

and see if there are choices we can make for u1 and u2 to make y a solution of the original, nonhomoge-
neous equation. Now before we proceed, I want to point out that in the end, we will end up with some
equation relating u1 and u2 to y1, y2, p, q, and g. This will be a single equation for the two unknown
functions u1, u2. Heuristically, that means we should be able to impose one more condition on this pair
of functions and still expect there could be a solution.

So, let's plug it into the left-hand side and see what we get. We have

y′ = u1y
′
1 + u′1y1 + u2y

′
2 + u′2y2

It is at this point that we'll impose our extra condition, in a way that will make the calculation much
easier. We will require that

u′1y1 + u′2y2 = 0

so that now
y′ = u1y

′
1 + u2y

′
2

One very nice feature that this will give us is that y′ now involves no derivatives of the u's, and so y′′

will involve only �rst derivatives of the u's. Taking the next derivative, we get

y′′ = u1y
′′
1 + u′1y

′
1 + u2y

′′
2 + u′2y

′
2

and putting this together gives

y′′ + p(t)y′ + q(t)y = u1y
′′
1 + u′1y

′
1 + u2y

′′
2 + u′2y

′
2 + p

(
u1y
′
1 + u2y

′
2

)
+ q (u1y1 + u2y2)

= u1
(
y′′1 + py′1 + qy1

)
+ u2

(
y′′2 + py′2 + qy2

)
+ u′1y

′
1 + u′2y

′
2

= u′1y
′
1 + u′2y

′
2
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where we've used that y1 and y2 each is a solution to the CHE. So our condition on u1, u2 is now that
u′1y
′
1 + u′2y

′
2 = g. Notice now that we can write this along with our �rst constraint as a system of

equations

u′1y1 + u′2y2 = 0

u′1y
′
1 + u′1y2 = g

Note that this is simply a system of algebraic equations for the pair of functions u′1, u
′
2. We can write

it in matrix form as [
y1 y2
y′1 y′2

] [
u′1
u′2

]
=

[
0
g

]
Remember the Wronskian? Me neither. Inverting the matrix above we get[

u′1
u′2

]
=

1

y1y′2 − y2y′1

[
y′2 −y2
−y′1 y1

] [
0
g

]
or, denoting W (y1, y2)(t) = y1(t)y

′
2(t)− y2(t)y

′
1(t), we get

u′1(t) =
−y2(t)g(t)
W (y1, y2)(t)

and u′2(t) =
y1(t)g(t)

W (y1, y2)(t)

So integrating we have

u1 =

ˆ
−y2(t)g(t)
W (y1, y2)(t)

dt and u2 =

ˆ
y1(t)g(t)

W (y1, y2)(t)
dt

Notice that each integral comes with a constant of integration. Including these constants in the expres-
sion u1y1 + u2y2 will give us a term c1y1 + c2y2, which is the general solution of the CHE.
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