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Nonhomogeneous Equations

Now that we've seen much of the theory of solving homogeneous second order linear ODE's, we're ready

to think about solving nonhomogeneous ones. That is, we'll be thinking about equations of the form

y′′ + p(t)y′ + q(t)y = g(t)

where now g(t) 6= 0. We will sometimes call g(t) the �nonhomogeneous term�.

To lay the foundation, I again want to emphasize the parallels with linear algebra. As we did before,

we'll denote the left-hand side of the ODE by

L[y] := y′′ + py′ + qy

so that the equation we're studying is L[y] = g. Our goal will be to �nd the general solution, meaning

an expression which describes every possible function y that satis�es L[y] = g.
In the homogeneous case, L[y] = 0, we rediscovered a fact from linear algebra, which says that the

set of all solutions is a vector space. This fact follows from the fact that the left-hand side L is linear,

and is proved in exactly the same way as showing that the nullspace of a matrix is a vector space.

As I alluded to before, solving L[y] = g is just like solving Ax = b. To see what I mean, consider

the following fact: If Y1 and Y2 are two solutions to L[y] = g, then their di�erence is a solution to the

corresponding homogeneous equation (CHE), L[y] = 0. To see why this is true, we can just compute

L[Y1 − Y2], remembering that L is linear, and get

L[Y1 − Y2] = L[Y1]− L[Y2]

= g − g = 0

This statement is quite straightforward, but its implications are huge. What this gives us is that if I

somehow �nd a single solution Y to the nonhomogeneous equation L[y] = g, then I can get any other

solution by adding a function which satis�es the CHE. The upshot is that if {y1, y2} is a fundamental

set of solutions to the CHE L[y] = 0, then the general solution to L[y] = g is

Y + c1y1 + c2y2
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In this way, the tools we developed for �nding fundamental sets of solutions to homogeneous equations

continue to be critically useful in our study of nonhomogeneous equations. The only thing we're missing

is a way to �nd a single solution to L[y] = g. The �rst method we will see to do this is called the

method of undetermined coe�cients

Undetermined Coe�cients

This method is yet another guess-and-check method, similar to the reasoning that got us to the char-

acteristic equation and the method of reduction of order. Before we go into details, I should point

out that this method is only applicable to the constant coe�cient case - that is, ODEs of the form

ay′′ + by′ + cy = g(t).
The basic idea is to look at the nonhomogeneous term g(t) and guess that there's a solution that is

of a similar form. It's best to illustrate this by example:

An exponential function

Consider the nonhomogeneous ODE

y′′ − 3y′ − 4y = 3e2t

The nonhomogeneous term, 3e2t, is an exponential. Because we know that exponential functions come

back to themselves after di�erentiation, we might reasonably guess that the solution also looks like e2t.
So we'll make a guess that Y = Ae2t is a solution for some constant A. Let's plug this into the ODE

and see what we get:

Y ′′ − 3Y ′ − 4Y = 4Ae2t − 6Ae2t − 4Ae2t

= −6Ae2t

and we need this expression to be equal to 3e2t if Y is going to be a solution. That means that −6A = 3,
so A = −1

2 , and we have that Y = −1
2 e2t is a solution to the ODE. If you don't believe me, check it

yourself!

We can now see why this method is called �undetermined coe�cients�. We made a guess that had

a coe�cient in it, and that coe�cient was left undetermined. Plugging it in to the ODE told us what

it had to be, and we end up with a solution!

A trig function

Let's move on to a di�erent type of nonhomogeneous term - a trig function. Let's �nd a solution to the

ODE

y′′ − 3y′ − 4y = 2 sin(t)

Based on our reasoning before, we might guess that Y = A sin(t) will work. So we plug in our guess

and see what happens:

Y ′′ − 3Y ′ − 4Y = −A sin(t)− 3A cos(t)− 4A sin(t)

= −5A sin(t)− 3A cos(t)
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Well, this sucks. No matter what A we choose, there's no way to get rid of that pesky cosine term!

Good grief. I guess this means it's time to give up and go home.

But soft! What light through yonder window breaks? It is the east, and cos(t) is the sun. Let's

see what we get with a guess that's some combination of cos(t) and sin(t). That is, let Y = A sin(t) +
B cos(t). We get

Y ′′ − 3Y ′ − 4Y = −5A sin(t)− 3A cos(t)−B cos(t) + 3B sin(t)− 4B cos(t)

= (−5A+ 3B) sin(t) + (−3A− 5B) cos(t)

Setting this expression equal to 2 sin(t) gives us two equations for the two unknowns, A and B. We

have

−3A− 5B = 0

−5A+ 3B = 2

so A = −5/17 and B = 3/17, and the solution is

Y (t) =
−5
17

sin(t) +
3

17
cos(t)

Fractions suck but we're all grownups. More importantly, computers exist.

A polynomial

It turns out we can even apply this method to equations whose nonhomogeneous term is a polynomial.

For instance,

y′′ − 3y′ − 4y = 4t2 − 1

The intuition we've been working up towards would tell us to guess that there's a solution which is a

polynomial. This is the right thing to do. Given that di�erentiation decreases the order of polynomials,

we need to start with one of at least second order (to be able to get the 4t2 on the right-hand side).

So we'll guess Y = At2 + Bt + C. Notice there are now 3 undetermined coe�cents, and we'll get 3

equations for them at the end by equating coe�cients of each power of t. Let's do it!

Y ′′ − 3Y ′ − 4Y = 2A− 3(2At+B)− 4(At2 +Bt+ C)

= −4At2 + (−6A−B)t+ (2A− 3B − 4C)

Equating this to 4t2 − 1 gives, �rst, A = −1, then B = 6, then C = −5. So our solution is Y (t) =
−t2 + 6t− 5.

Combinations

We can play a similar game for functions that are products of the types of functions we just dealt

with. For instance, if the nonhomogeneous term is e2t cos(3t), we should guess a solution Y (t) =
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e2t(A cos(3t) + B sin(3t)), becuase di�erentiating will turn sine and cosine into each other, while the

factor e2t will stay multiplying each term.

There's one more strange situation that can arise - again, let's look at an example.

Consider the ODE

y′′ − 3y′ − 4y = e−t

According to what we did before, we can guess that Y = Ae−t is a solution. Plugging it in we get

Y ′′ − 3Y ′ − 4Y = e−t + 3e−t − 4e−t = 0

which can never equal e−t, no matter what A we pick! The issue is clear: our guess was a solution to

the corresponding homogeneous equation. In this case, we should modify our guess by multiplying by

t. That is, guess Y = Ate−t. In this case, Y ′ = A(e−t − te−t) and Y ′′ = A(−2e−t + te−t), so we get

Y ′′ − 3Y ′ − 4Y = e−t (A (−2 + t)− 3A(1− t)− 4At)

= e−t (−5A) + te−t (A+ 3A− 4A)

so A = −1/5, and the solution is Y = −1
5 te−t.

So that's basically it. The idea behind undetermined coe�cients is fairly straightforward. The

trickiest parts are:

1. Knowing the right form to guess

2. Doing the algebra to solve for all of the coe�cients

There is a table in your book (table 3.5.1 on page 182) that covers the �rst point. It's recreated here

(Pn denotes some polynomial of degree n, and s = 0, 1, 2 is the smallest whole number such that your

guess is not a solution to the corresponding homogeneous equation)

g(t) Guess at Y (t)

Pn(t) = ant
n + · · ·+ a1t+ a0 ts (Ant

n + · · ·+A1t+A0)

Pn(t)e
at ts (Ant

n + · · ·+A1t+A0) e
at

Pn(t)e
at

{
sin bt

cos bt
tseat [(Ant

n + · · ·+A1t+A0) cos bt+ (Bnt
n + · · ·+B1t+B0) sin bt]

The algebra always just sucks a bit. Computers help.
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