
MAT 22B - Lecture Notes

17 August 2015

Wrapping up Mass on Spring with Damping

The ODE we derived from physical principles (F = ma) was

my′′ + by′ + ky = 0

If we consider the case of zero damping, i.e. b = 0, the characteristic equation has roots r± = ±
√
− k

m =

±i
√

k
m . Hence, the (real-valued) solutions are y1 = cos

(
t
√

k
m

)
and y2 = sin

(
t
√

k
m

)
. Note that this

makes sense if we think about it physically: increasing the mass m will make it oscillate more slowly,

and a sti�er spring (i.e. larger k) will make it oscillate more quickly.

If we include damping, the roots of the characteristic equation are

r± =
−b±

√
b2 − 4mk

2m
=
−b
2m
±
√
b2 − 4mk

4m2

So, depending on the parameter values, the roots could be real and distinct, repeated, or complex. Let's

focus on the complex case �rst - that is, 4mk > b2. In this case, the real-valued solutions are

y1 = exp

(
− b

2m
t

)
cos(ωt)

y2 = exp

(
− b

2m
t

)
sin(ωt)

where ω =

√
k
m −

(
b

2m

)2
. Notice two things: the frequency ω has decreased as compared to the

un-damped case, which makes physical sense, and the magnitude of each of the solutions decays expo-

nentially due to the exp
(
− b

2m t
)
term. The rate of this decay increases with increased damping (b), and

decreases with increasing m. That is, a larger mass has more inertia.

We can also consider the case of real, distinct roots. This happens if the damping constant b is

too large, and so we typically say that the oscillator is �over-damped�. In this case, you can convince

yourself (both physically and mathematically) that both of these roots are negative. The solutions
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aren't very interesting; they simply decay to zero, with possibly a single change in direction. You can

visualize a mass that is damped so strongly that it doesn't have time to actually oscillate at all. The

case of repeated roots is qualitatively similar to the over-damped case, but we don't yet have the tools

to write down the solution

Solutions of Linear Homogeneous Equations

My intention with this lecture is to emphasize connections to linear algebra.

Last time, we saw how to solve equations of the form

ay′′ + by′ + cy = 0

using the characteristic equation to �nd numbers r such that ert solves the DE. We saw that to get the

general solution to such an equation, we need two di�erent solutions, er1t and er2t (as long as b2 6= 4ac),
and then every solution has the form c1e

r1t+c2e
r2t. This can be read as a statement about the structure

of the set of solutions to the ODE: in particular, the set is a two-dimensional vector space (with basis

{er1t, er2t}). We'll now talk a little bit more generally about the sets of solutions of second order, linear,

homogeneous equations.

A second order linear ODE has the form

a2(t)y
′′ + a1(t)y

′ + a0(t)y = g(t)

but we will typically consider the form

y′′ + p(t)y′ + q(t)y = g(t)

where we have �divided through by a2(t)�, similarly to how we dealt with �rst order linear ODE's.

Again, such an equation is called homogeneous if g(t) ≡ 0.
At this point, a piece of notation will help clarify our discussion considerably. Let's de�ne an operator

(i.e. machine, gadget, black box,...) called L, which eats functions and spits out other functions. We'll

de�ne it by saying that if you feed it a (twice-di�erentiable) function φ = φ(t), it spits out

L[φ] = φ′′ + pφ′ + qφ

The square brackets are intended to emphasize that the input to L is a whole function, not just a

number. Likewise, the right-hand side is a function of t. Its value at any given t is

L[φ](t) = φ′′(t) + p(t)φ′(t) + q(t)φ(t)

If you want to impress your fancy mathematician friends and a cocktail party, you could write

L : C2(R)→ C(R)
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meaning that L takes as input a twice-di�erentiable (C2) function on R, and gives as output a continuous

(C) function on R.
The point is that we can now write our di�erential equation in the compact form

L[y] = g

or, if the equation is homogeneous,

L[y] = 0

The most important feature of L is that it is a linear operator. This means that for any constants

c1, c2, and any functions y1, y2, we have

L[c1y1 + c2y2] = c1L[y1] + c2L[y2]

To see this, we can just compute:

L[c1y1 + c2y2] = (c1y1 + c2y2)
′′ + p (c1y1 + c2y2)

′ + q (c1y1 + c2y2)

= c1
(
y′′1 + py′1 + qy1

)
+ c2

(
y′′2 + py′2 + qy2

)
= c1L[y1] + c2L[y2]

Notice that this property is shared by matrix multiplication: if A is an m × n matrix, and ~x1 and ~x2
are n-dimensional vectors, then for any constants c1, c2, we have

A(c1~x1 + c2~x2) = c1A~x1 + c2A~x2

So, in a very literal sense, solving

L[y] = g

is just like solving

A~x = ~b

and in particular, solving

L[y] = 0

is just like solving

A~x = ~0

They key property of the set of solutions to A~x = ~0 is that they form a vector space, usually called

the nullspace of A. Likewise, solutions to L[y] = 0 form a vector space, since for any constants c1, c2
and any solutions y1, y2, we have

L[c1y1 + c2y2] = c1L[y1] + c2L[y2]

= c1 · 0 + c2 · 0 = 0
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Imposing Initial Conditions

It should be noted that there is an existence and uniqueness theorem for ODE's of this form, and it is

almost identical to the one for �rst-order linear ODE's. It says that if p, q, and g are all continuous on

some interval I ⊆ R containing t0, then the IVP

y′′ + p(t)y′ + q(t)y = g(t), y(t0) = y0, y
′(t0) = y′0

has a unique solution y(t), which is de�ned and twice di�erentiable everywhere on I.
An important thing to note about this theorem is that it tells us existence and uniqueness. That

means that for any pair of numbers (y0, y
′
0), we can stick them into the above IVP, and get exactly

one solution that meets those initial conditions. Likewise, for any function y(t) that satis�es the ODE,
we can calculate y(t0) and y′(t0) and get the initial conditions it satis�es. This is all to say that an

expression can rightly be called a general solution to the ODE if and only if it is in fact a solution, and

can meet any initial conditions y0, y
′
0 we want to impose.

So let's see how this looks in our special case of g = 0 - that is, for homogeneous equations. The

special treat that we get in this case is that the set of solutions is a vector space, and as such, it has a

basis. Moreover, because the ODE is second order, the solution space will be two dimensional (a fact

that I haven't actually proven, but is true). Hence, there are functions y1, y2 so that every solution is of

the form c1y1 + c2y2. We sometimes call this expression the span of {y1, y2}, just like in linear algebra.

Now, as we just established, to check that the expression c1y1 + c2y2 is the general solution, we

should check that it is a solution and that it can meet any initial conditions. The �rst point is true as

long as y1 and y2 are both solutions, by linearity and homogeneity of L[y] = 0. So let's see if we can

pick c1 and c2 to meet an arbitrary pair of initial conditions. If y0 and y′0 are two real numbers, then

imposing them as initial conditions looks like

c1y1(t0) + c2y2(t0) = y0

c1y
′
1(t0) + c2y

′
2(t0) = y′0

or, in matrix form [
y1(t0) y2(t0)
y′1(t0) y′2(t0)

] [
c1
c2

]
=

[
y0
y′0

]
So �nding the constants c1, c2 has been reduced to inverting the matrix above. Now, recall that a

matrix is invertible if and only if its determinant is nonzero. So if the determinant

W (y1, y2)(t0) :=

∣∣∣∣ y1(t0) y2(t0)
y′1(t0) y′2(t0)

∣∣∣∣
is not equal to zero, then the pair of functions {y1, y2} spans the set of all solutions. In other words,

c1y1+c2y2 is the general solution, and we call the set {y1, y2} a fundamental set of solutions. The above

determinant is called the Wronskian determinant, or just the Wronskian.

You may be wondering at this point about the appearance of t0 above. What ifW (y1, y2)(t0) is zero
for some t0 and nonzero for others? Well, that simply doesn't happen if we stay within an interval I
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on which existence and uniqueness of solutions holds. We can see this through a theorem called Abel's

Theorem. It states that if y1 and y2 are both solutions to y′′ + py′ + qy = 0, then their Wronskian is

given by

W (y1, y2)(t) = c exp

[
−
ˆ
p(t)dt

]
so that either W = 0 for all t ∈ I (if c = 0), or W 6= 0 for all t ∈ I, since the exponential of anything is

never zero. The point here is that when you compute the Wronskian, you can evaluate it on any point

inside an interval I on which p, q, and g are continuous.

Another Perspective

The thing that the Wronskian is checking is whether or not y1 and y2 are linearly independent. Linear

independence here means the same thing as it does in linear algebra: that the only c1 and c2 that satisfy
c1y1 + c2y2 = 0 are c1 = c2 = 0. This statement is kind of hard to get your hands on, so let's think

instead about linear dependence. The functions y1, y2 are linearly dependent if there are nonzero c1, c2
so that c1y1 + c2y2 = 0. We can now rearrange this to get

y1
y2

= −c2
c1

Huh. So, if the functions are linearly dependent, their quotient is a constant. One way to check if

something is a constant is to see if its derivative is zero. So we can check

d

dt

[
y1
y2

]
=
y2y
′
1 − y1y′2
(y2)

2

which is zero exactly when y2y
′
1− y1y′2 = 0, and this is exactly the Wronskian determinant we just saw!

Neato.

Examples

Compute the Wronskian of er1t, er2t for r1 6= r2
Compute the Wronskian of ert, tert

Compute the Wronskian of cos2(θ), 1 + cos 2θ
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