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Euler's Method

Euler's method is a way to get a computer to estimate the solution of an initial value problem. It's a

very straightforward method - if you sat down and tried to make one up in the simplest way possible,

you'd probably come up with Euler's method.

First we should say more precisely what we mean when we say that the computer should �estimate

the solution� of an IVP. Generally, IVP's don't have solutions that are given by tidy formulas for y(t).
Hence, when solving an IVP on a computer, the output is generally a list of y-values, computed at some

speci�ed list of t-values. So, in order for a computer to know what to do, we need to give it an IVP

(i.e. an ODE y′ = f(t, y) and initial condition y(t0) = y0), and specify at which t-values we want the
solution to be evaluated. For convenience, we'll denote the list of t-values (t1, . . . , tN )

The idea behind Euler's method is a kind of �bootstrapping�. To start, we know that the point

(t0, y0) is on the solution curve. Moreover, we know the slope of the solution curve at this point - it's

just y′ = f(t0, y0). These two pieces of information tell us line which is tangent to the solution curve at

(t0, y0). Assuming that the step size t1 − t0 is small, we estimate that the value of the actual solution

is close enough to the value of the tangent line. Putting this into formulas, we have

y1 = y0 + (t1 − t0)f(t0, y0)

where y1 ≈ y(t1). Then we just repeat this process: for any n between 0 and N − 1, we set

yn+1 = yn + (tn+1 − tn)f(tn, yn)

Given the initial condition (t0, y0) and the sequence (t1, . . . , tN ), the above formula determines the

sequence (y1, . . . , yN ), which is our estimated solution.

Let's see how this looks in an example. Consider the IVP

y′ = y, y(0) = 1

That is, y′ = f(t, y) with f(t, y) = y. We know that the solution is y(t) = et. Let's see what

Euler's method tells us. To do that, we need to specify a list of t-values. For simplicity, let's just take
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(t1, . . . , tN ) =
(
1
N , 2

N , . . . , N−1N , 1
)
, so that the step size (tn+1 − tn) =

1
N for all n. For now, we'll leave

N as an unspeci�ed large integer.

What does Euler's method say is the value of the solution at time t1? Well, using the formula we

derived above, it should be

y1 = y0 + (t1 − t0)f(t0, y0)

= 1 +
1

N
f(0, 1) = 1 +

1

N

We know that the solution should be increasing, and 1 + 1
N > 1, so we're not going completely crazy.

Now what about the nth term? We can do a little simpli�cation right o� the bat:

yn+1 = yn +
1

N
f(tn, yn)

= yn +
1

N
yn

=

(
1 +

1

N

)
yn

Hey! That's pretty neat: to get to the next y-value, we simply multiply by 1+ 1
N . With a little thought,

you can convince yourself that for any n, we have yn =
(
1 + 1

N

)n
.

Now let's get a bit of a picture of how well this estimation mimics the actual solution. According

to our formula, we have that the �nal value is given by yN =
(
1 + 1

N

)N
. Taking the limit as N → ∞

(that is, the number of steps becomes in�nite), we can recall from calculus that

lim
N→∞

(
1 +

1

N

)N

= e

which exactly matches the value of the exact solution y(1) = e1 = e!
The above calculation is not meant to be representative of how you use Euler's method in the real

world, but rather to show you how the method produces something that reasonably recreates the actual

solution to an IVP. In practice, Euler's method is not used very much. This is because being so simple,

it is highly prone to errors. To see this, try modifying the above calculation to estimate y(2) and y(3),
and see how the di�erence between the estimated and exact solutions grows with time. The reason this

occurs is that for certain IVP's, errors compound - underestimating y1 leads to underestimating the

slope at (t1, y1) as well, and so leads to a greater underestimation of y2, and so on.

The most commonly used method in practice is called the Runge-Kutta method, which essentially

uses some tricks to get a better value to use for the slope between two points on the solution curve.

Interestingly, the method was developed around 1900, way before the advent of computers. The moti-

vation was theoretical - proving that the estimated solution converges in the limit of step size going to

zero is one way to prove that an IVP has a solution.
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Second Order, Linear, Homogeneous Equations with Constant Coe�-

cients

Phew, that's a mouthful. Let's unpack what this means. A second order linear equation has the form

a2(t)y
′′ + a1(t)y

′ + a0(t)y = g(t)

Saying that the equation is homogeneous means that the right-hand side, g(t) is equal to zero. Finally,

saying that the equation has constant coe�cients means that the coe�cient functions a0, a1, a2 do not

depend on time - they are just constants. So, the equations we are talking about have the form

ay′′ + by′ + cy = 0

The prototypical example of such an equation is a mass on a spring with damping. If y(t) denotes the
position of the mass away from equilibrium at time t, then the spring force is (by Hooke's law) equal

to −ky, where k > 0 is the spring constant, and the damping force is −bdydt , where b > 0 is called the

damping coe�cient.

F = ma

−ky − b
dy

dt
= m

d2y

dt2

Rearranging, we get

m
d2y

dt2
+ b

dy

dt
+ ky = 0

So the equation of motion is second order, linear, and homogeneous, with constant coe�cients. If you're

not sick of masses on springs by the end of the class, I'll give you a donut. On a spring.

As we've mentioned before, the fact that these equation involves a 2nd derivative means that its

general solution will have two free parameters. To see what that looks like, and to get a hint at the

general strategy for solving these equations, let's consider a simple example:

y′′ − 4y = 0

A solution to this equation has the property that its second derivative is four times itself. An example

of a function that comes back to itself after di�erentiating twice is the exponential function - and, if we

choose the right one, we can get the 4 to come out also. Consider the function y1 = e2t. Then y′1 = 2e2t

and y′′1 = 4e2t = 4y. So we've found a solution! Now, notice that y2 = e−2t works as well - the �rst

derivative is y′2 = −2e−2t, and y′′2 = 4e−2t. The fact that made both of these functions work is the fact

that 22 = (−2)2 = 4.
So far we have found two solutions. But what is the general solution? That is, how do we write all

solutions of y′′ − 4y = 0 in one expression?
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The answer relies on two key properties of the DE: linearity and homogeneity. Consider y = y1+y2.
Is this also a solution of the ODE? Let's check

y′′ − 4y = (y1 + y2)
′′ − 4(y1 + y2)

=
(
y′′1 − 4y1

)
+
(
y′′2 − 4y2

)
= 0 + 0 = 0

and indeed, it is! The step from the �rst line to the second was made possible by the fact that the

ODE is linear. The fact that it is homogeneous gives us that each term in parentheses on the second

line is zero, and so they add to zero, making the sum y1 + y2 a solution also. If there were a nonzero

right-hand side g(t), then the last line would read g(t) + g(t) = 2g(t) 6= g(t), and y1 + y2 would not be

a solution.

The argument outlined above establishes that for any real constants c1 and c2, the function y =
c1y1 + c2y2 is also a solution to the ODE. Physicists call this the princciple of superposition. In math

speak, this means that the set of solutions to the ODE makes up a vector space. Whatever words you

use, you should know that it's true and why it's true. What's more, these two functions happen to

satisfy a certain property that means that any solution to the ODE y′′ − 4y has the form c1y1 + c2y2,
and so we can rightly call the expression c1y1 + c2y2 the general solution to the ODE. We'll talk about

the property I referred to in detail a few lectures from now.

The Characteristic Equation

The key thing that made both e2t and e−2t is that both 2 and −2 were solutions to the equation

r2 − 4 = 0. We call this equation the characteristic equation of the ODE y′′ − 4y = 0. To see where it

came from and how it generalizes, let's consider the general form of a second order, linear, homogeneous

ODE with constant coe�cients:

ay′′ + by′ + cy = 0

Now what we'll do, since exponential functions have been so good to us this far, is guess that there's a

solution of the form y = ert for some constant r. If we plug in this guess, we �nd

ay′′ + by′ + cy = a
(
ert

)′′
+ b

(
ert

)′
+ c

(
ert

)
= ar2

(
ert

)
+ br

(
ert

)
+ c

(
ert

)
=

(
ar2 + br + c

)
ert

Now, if ert is to be a solution, the above expression must be equal to zero. In other words, either of the

factors (ar2 + br + c) or ert must be equal to zero for all t. However, ert is always nonzero, regardless

of r and t. So our only hope is to pick r to be a solution of the equation

ar2 + br + c = 0

This is called the characterisitic equation of the ODE ay′′+ by′+ cy = 0. By the quadratic formula, its

solutions are

r± =
−b±

√
b2 − 4ac

2a
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and as we know from algebra, these can be either real and distinct, real and repeated, or complex. We'll

deal with each of these cases separately, but with an eye towards them being secretly the same thing.

Real and Distinct Roots

This is the simplest case. When the characteristic equation has two distinct real roots r+ and r−, we
set y1 = er+t and y2 = er−t, and the general solution is c1y1 + c2y2. Again, in a few lectures we'll see

that in this case, the functions y1 and y2 satisfy a property that means that this expression captures

all possible solutions.

Examples

y′′ + y′ − 2y = 0 =⇒ y = c1e
t + c2e

−2t

y′′ − 5y′ + 6y = 0 =⇒ y = c1e
2t + c2e

3t

2y′′ + 3y′ + y = 0 =⇒ y = c1e
−t + c2e

−t/2

5


