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Terminology

A di�erential equation (DE) is an equation involving a function and its derivative(s). A solution to a

di�erential equation is a function that makes the di�erential equation true. This point is worth over-

stressing: to solve a di�erential equation means to �nd a function. For instance, the function y = et

is a solution of the di�erential equation y′ = y, and the function y = t2 is a solution to the di�erential

equation y′ = 2t.
Clearly, di�erential equations may have many solutions. For instance, Aet is a solution to y′ = y for

any real number A, and y = t2 + c is a solution to y′ = 2t for any real number c. An expression that

captures all possible solutions to a DE at once is called the general solution to that DE.

A DE expresses one piece of information we can know about a function. We might also know the value

of the unknown function at some point, like y(0) = 1. Such a piece of information is called an initial

condition. A DE together with an initial condition is called an initial value problem (IVP). As you can

probably guess, the solution to an IVP is a solution to the DE which also satis�es the initial condition.

Classi�cation of DE's

A di�erential equation is an equation involving a function and its derivative(s). That is extremely

general, and so there's no general purpose way to solve every DE. However, there are techniques that

work for large classes of DE's, so it's important to learn how to identify them. The following introduces

some of the fundamentals of classifying DE's

Partial vs. Ordinary

A partial di�erential equation (PDE) is a DE which contains partial derivatives. This can only happen

if the unknown function is a function of more than one variable (for instance, x, y, and z positions

in space, or space and time). An ordinary di�erential equation (ODE) is a DE where the unknown

function is a function of only one variable, and so can only contain �ordinary� derivatives. There is a lot

of theory for solving ODE's that just plain doesn't work for PDE's. The theory of PDE's is beautiful

and deep and massively applicable to the real world, but we will only be thinking about ODE's in this

class.
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Order

The order of a di�erential equation is the order of the highest order derivative in the equation. For

instance, y′ + y = 0 is �rst order, y′′ + y = 0 is second order, (y′)2 = t is �rst order, and so on. First

order DE's are nice because, among other things, they can often be rearranged and solved directly by

integration. It is also easier to design computer algorithms to numerically solve �rst order DE's.

Typically, the general solution to an nth order ODE has n free parameters. One way to think about

why this is the case is to consider solving y(n) = g(t). To arrive at y(t), we need to integrate n times,

and each time, we need to include another constant of integration.

Linear vs. Nonlinear

The notion of linearity of a DE is a strange one until you get used to it, but it is important to understand

what it means and how to identify it. The most general form of an nth-order linear ODE is

a0(t)y + a1(t)y
′ + a2(t)y

′′ + · · ·+ an(t)y
(n) = g(t)

where y(n) denotes the nth derivative of y. Note that the coe�cients of the y terms, the ak(t), are, in
general, functions of t. If the coe�cients do not actually depend on t, then we say that the equation

has constant coe�cients. This means that something like y′ + t2y = 0 is still a linear ODE. The key

point is that the unknown function y appears only as itself or one of its derivatives - not, for instance,

as y2, or sin(y), or yy′, and so on.

The key fact that linearity gives us is the following; if we abbreviate the left-hand side above as

L[y] = a0(t)y + a1(t)y
′ + a2(t)y

′′ + · · ·+ an(t)y
(n)

then the function L has the properties that L[y1 + y2] = L[y1] + L[y2], and L[ky] = kL[y], for any

(smooth) functions y, y1, y2 and constant k. This means, in a certain sense, that solving L[y] = g has a

lot in common with solving equations like A~x = ~b in linear algebra. More on this later.

A �nal remark about this setup; if the function g(t) on the right-hand side is zero, then we say that

the equation is homogeneous, and otherwise, we say that it is non-homogeneous. Again, the di�erence

is the same as the di�erence between solving A~x = ~0 and solving A~x = ~b

Examples

x′′ + bx′ + kx = 0

Second order (x′′), linear, homogeneous

yy′ = 2t

First order (y′), nonlinear (yy′), non-homogeneous (2t)

d4x

dt4
+ sin(t)

d2x

dt2
− 4x = cos(t)

Fourth order, linear, non-homogeneous (cos(t))
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Separable Equations

Separable equations are the nicest of all ODE's. They are called separable because it is possible to

�separate� the independent and dependent variables - that is, you can gather all the t's together and all

the y's together. These are equations of the form

f(y)
dy

dt
= g(t)

The thing that almost everyone does, but is not fully rigorous by itself, is to �multiply through by dt
and integrate�, so you get ˆ

f(y)dy =

ˆ
g(t)dt

and after integrating, you have some function of y equal to some other function of t. Sometimes, you

can then solve for y as a function of t; when this is possible, we say that we have found an explicit

solution. Otherwise, we leave it as is, and say we've found an implicit solution. For instance, we might

end up with something like y2 = 1 − t2, which de�nes a circle in the (t, y)-plane, and we can't write

down a single-valued function y(t) that traces out the same points.

The way to make the �multiply by dt� step rigorous is the following. Say F (y) is an antiderivative of

f(y), so that dF
dy = f . Since y is then a function of t, we can di�erentiate F with respect to t using the

chain rule:
dF

dt
=
dF

dy

dy

dt
= f(y)

dy

dt

which is the left-hand side of the equation we began with. So we have

dF

dt
= g(t)

and now we can integrate each side with respect to t to get

F (y) =

ˆ
g(t)dt

but F (y) =
´
f(y)dy. So we end up with the same formula we got by pushing around the not-quite-

well-de�ned in�nitesimal dt. Indeed, the fact that this works is the reason that notation was invented.

Examples

dy

dt
= −y2t =⇒ y =

1

t2 + c

dy

dt
= yt2 =⇒ y = Ae

t3/3

dy

dt
= (y − 1)t =⇒ y = Ae

t2/2 + 1
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First Order Linear Equations - the Integrating Factor

The next class of ODE's we'll consider is �rst order linear equations. According to the general form we

saw before, these can all be written as

a0(t)y + a1(t)y
′ = g(t)

However, we'll rewrite it slightly by dividing through by a1(t), to get

y′ + p(t)y = g(t)

where p = a0
a1
. You may be concerned about if a1(t) = 0 for some t, and you should be - this situation

presents its own di�culties that we aren't ready to deal with yet. So for now, let's assume that a1(t) 6= 0
for all t.
The key insight to the integrating factor method is to make the left-hand side look like the derivative

of a single thing, so that we can simply integrate and solve for y. It turns out that we can do that! To

see how, suppose we multiply both sides of the equation by some function µ(t):

µ(t)y′ + µ(t)p(t)y = µ(t)g(t)

Now, wouldn't it be nice if the left-hand side were the derivative of, say, µ(t)y? Let's see if that is

possible:
d

dt
[µ(t)y] = µ(t)y′ + µ′(t)y

The above expression is equal to the left-hand side of our DE as long as µ′(t) = µ(t)p(t). Assuming

that we've found such a µ(t), then we can rewrite our DE as

(µy)′ = µg

So,

µ(t)y(t) =

ˆ
µ(t)g(t)dt =⇒ y(t) =

´
µ(t)g(t)dt

µ(t)

keeping in mind that the antiderivative above can include any arbitrary constant of integration. So

we've found our solution! The only missing piece is the function µ, which we can determine from the

equation µ′ = pµ. Noting that this is a separable equation, we get

dµ

dt
= µ(t)p(t) =⇒

ˆ
dµ

µ
=

ˆ
p(t)dt =⇒ µ(t) = A exp

(ˆ
p(t)dt

)
for any constant A. We will generally choose A = 1 because any µ with µ′ = pµ will do the trick.
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Examples

y′ +
2

t
y =

cos(t)

t2
y(π) = 0, t > 0 =⇒ y =

sin(t)

t2

y′ + 3t2y = t2, y(0) = 1 =⇒ y =
1

3
+

2

3
e−t

3

ty′ + (t+ 1)y = t, y(ln 2) = 1, t > 0 =⇒ y = 1− 1

t
+

2

tet

5


