
MAT 22B - Lecture Notes

4 September 2015

Solving Systems of ODE

Last time we talked a bit about how systems of ODE arise and why they are nice for visualization.
Now we'll talk about the basics of how to solve linear systems, with some linear algebra review along
the way.

The model system we will consider is �rst order, linear, homogeneous, and has constant coe�cients.
That is, we can write the system as

d~y

dt
= A~y

where ~y is an n-dimensional vector depending on time t and A is a �xed n× n matrix.

Eigenvectors and Eigenvalues

As we noticed before, eigenvector/eigenvalue pairs provide us with solutions to the ODE above. To
recall, say ~y0 is an eigenvector of A with eigenvalue λ. That is, we have

A~y0 = λ~y0

so that A acts on ~y0 by simply �stretching� it by a factor λ. We might sometimes refer to (~y0, λ) as
an eigenpair, to emphasize that they come together - the eigenvalue means nothing unless we know the
corresponding eigenvector, and vice versa.

Given such an eigenpair, we can construct a vector-valued function of t, by the formula

~y(t) = eλt~y0

If you visualize this function as a point moving around n-dimensional space through time, then it traces
out a straight line, which is the ray spanned by ~y0. If λ > 0, then ~y(t) will get longer (i.e. move away
from the origin) as t increases, and if λ < 0, then ~y(t) will move towards the origin as t increases.

The key thing about this function is that it is a solution to the ODE. To see this, we can compute
each side of the equation. First, the derivative is

d~y

dt
=

d

dt
(eλt)~y0 = λeλt~y0
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Next, the matrix A acts on this function as

A~y(t) = Aeλt~y0 = eλtA~y0 = λeλt~y0

where we have used that matrix multiplication is linear (i.e. that A(c1~x1 + c2~x2) = c1A~x1 + c2A~x2).
So, viola! The function ~y(t) satis�es the ODE.

Fundamnetal Sets of Solutions - Just like before

Based on the line of reasoning we followed solving �rst and second order equations, the next logical step
should be to determine if we've captured all the solutions to the ODE. This question warrants thinking
about the set of solutions we can expect to �nd.

First, when our system is linear and homogeneous, the set of solutions form a vector space - that
is, we can take linear combinations of solutions and get another solution. In symbols, we have that for
any constants c1, c2 and any two solutions ~y1, ~y2 to the ODE, the function ~y = c1~y1 + c2~y2 is also a
solution. The proof works just how it did in the scalar case:

(c1~y1 + c2~y2)
′ = c1~y

′
1 + c2~y

′
2

= c1A~y1 + c2A~y2

= A (c1~y1 + c2~y2)

Since the set of solutions forms a vector space, it has a basis. If we �nd such a basis, say
(~y1, ~y2, . . . , ~yn), then every solution will be of the form

c1~y1 + c2~y2 + . . .+ cn~yn

for some choice of contants (ci). The key issue now is to �gure out where to look for such a basis, and
how to know when we've found it.

The discussion of eigenvectors above indicates that this might be a fruitful place to look for solutions
that might form a basis. To check whether we've gotten everything, we'll do something just like we did
in the second-order scalar case: make sure that we can meet any initial condition we might want to
impose. That is, given some collection of solutions (~y1, ~y2, . . . , ~yn) and an initial condition ~y(0) = ~y0,
we want to make sure there exist constants (c1, . . . , cn) so that

c1~y1(0) + . . .+ cn~yn(0) = ~y0

From linear algebra, this is the case precisely if the set of vectors {~y1(0), ~y2(0), . . . , ~yn(0)} is linearly
independent. Equivalently, we can write the equation above in matrix form as

y11(0) y12(0) . . . y1n(0)
y21(0) y22(0) . . . y2n(0)
...

...
...

yn1 (0) yn2 (0) . . . ynn(0)



c1
c2
...
c4

 =


y10
y20
...
yn0

 or Ψ(0)~c = ~y0
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where superscripts specify components of the various vectors, i.e.

~y1(0) =


y11(0)
y21(0)
...

yn1 (0)


So, to check if the matrix equation above as a solution ~c for every initial condition vector ~y0, we can
check if the determinant of the matrix Ψ(0) is or is not zero.

The Phase Plane

Because we're rather short on time to give the general treatement of systems of ODE, we're skipping
ahead to chapter 9 to see how the �linear, constant coe�cient, homogeneous� claptrap we've been
peddling all session is really more powerful and informative than you might initially think.

For the remainder of the discussion, we'll focus on a two-dimensional ODE. That is, solutions will
be functions of time which take values in the plane. To start, we'll consider systems of the form

~x′ = A~x

and consider the di�erent kinds of solutions we can get, based on the eigenvalues and eigenvectors of
A. To be clear, ~x is a two-dimensional vector, and A is a 2× 2 matrix.

Notice that regardless of A, the function ~x(t) = ~0 is always a solution of the system. A boring
solution, but a solution. Recalling our discussion of autonomous equations, we say that ~x = ~0 is an
equilibrium point of the system. In our discussion before, we talked about the stability of equilibria, in
terms of whether nearby trajectories move towards or away from the equilibrium. We'll do the same
thing in the two-dimensional case, and �nd that there are decidedly more possibilities for what kind of
stability an equilibrium can possess (and there become yet more in higher dimensions).

Real, Distinct Eigenvalues

Let's say A has two distinct, real eigenvalues λ1 and λ2 with eigenvectors ~ξ1 and ~ξ2, respectively. Then
the function

~x = c1~ξ1e
λ1t + c2~ξ2e

λ2t

is a solution to the system for any c1, c2. How can we visualize this? Well, that depends. If λ1 and
λ2 are both positive, then every solution goes away to in�nity as t→∞. In this case, we say that the
equilibrium ~x = ~0 is an unstable node. Likewise, if both λ1 and λ2are negative, then every solution will
approach ~0 as t→∞. In this case, we say that the equilibrium ~x = ~0 is a stable node.

If λ1 and λ2 have opposite signs, however, the behavior is more interesting. Say λ1 > 0 and λ2 < 0.
Then if c1 6= 0 in the above expression, then ~x(t) contains a term that will grow very large as t → ∞
(namely, eλ1t). However, if c1 = 0, then the only term left is c2~ξ2e

λ2t, which approaches zero as t→∞.
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This is a situation we don't see for one-dimensional �rst order equations. For many initial conditions,
the trajectory will run o� to in�nity, but for some initial conditions, the trajectory will go towards the
�xed point ~x = ~0. In this case, we say that the equilibrium is a saddle or saddle point. To see why,
consider rolling a ball on a saddle-shaped surface. The ball will settle down into the middle if rolled
exactly at the right angle, but will fall o� and move away from the middle otherwise.

Repeated Eigenvalues

Degenerate node. The interesting/complicated ratio is too low to talk about right now.

Complex Eigenvalues

We can do some abstract junk with complex solutions and yadda yadda but there's a simpler way to
deal with the system in our current (2D) setting. Consider the system

~x′ =

(
λ µ
−µ λ

)
~x

You can check that the matrix above has eigenvalues λ± iµ. In scalar form, we have

x′1 = λx1 + µx2

x′2 = −µx1 + λx2

Since your brain should by now be primed to think rotation whenever you see complex numbers, let's
convert to polar coordinates. Recall

r2 = x21 + x22, tan θ =
x2
x1

We're going to convert the system into ODEs for r and θ. Di�erentiating the �rst equation with respect
to t we get

2rr′ = 2x1x
′
1 + 2x2x

′
2

rr′ = x1 (λx1 + µx2) + x2 (−µx1 + λx2)

rr′ = λ
(
x21 + x22

)
= λr2

so r′ = λr. What a relief! Now for θ(
sec2 θ

)
θ′ =

x1x
′
2 − x2x′1
x21(

sec2 θ
)
θ′ =

1

x21
(x1 (−µx1 + λx2)− x2 (λx1 + µx2))(

sec2 θ
)
θ′ =

−µ(x21 + x22)

x21
= −µr

2

x21
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By geometry, cos θ = x1
r , so this reduces to θ′ = −µ. WAHOO.

As if by magic, these coupled di�erential equations for x1 and x2 have turned into a pair of uncoupled
equations for r and θ. We can solve them in a moment;

r(t) = r0e
λt, θ(t) = θ0 − µt

In other words, the point ~x(t) rotates around the origin at frequency µ, and moves either towards or
away from the origin in a way dictated by λ. If λ > 0, then all trajectories go o� to in�nity as t→∞,
and we say that the origin is an unstable spiral. Conversely, if λ < 0, all trajectories fall into the origin,
and we call the origin a stable spiral.

Pure Imaginary Eigenvalues

You may notice that we left out the case λ = 0 above. It's not that di�erent from the spiral case,
except that trajectories neither move towards nor away from the origin. In this case the origin is called
a center. It has �neutral� stability. This happens with an undamped mass on a spring - oscillations
continue forever and ever, without dying out or blowing up to in�nity.

Approximating a Nonlinear ODE by a Linear ODE near an equilibrium point

If I have a nonlinear two-dimensional ODE

~x′ = ~F (~x)

then I can �nd its equilibria, that is, vectors ~x∗ such that ~F (~x∗) = 0, so that a trajectory that starts
there will never leave. It turns out that if ~F is smooth enough, we can classify its equilibria into exactly
the same categories as we just found above. This is because of the multi-dimensional Taylor's formula.

The idea is to approximate ~F by a simpler function in the vicinity of some interesting behavior - in
this case, an equilibrium. Taylor's formula does exactly that. We have

~F (~x) = ~F (~x∗) +
d~F

d~x
(~x− ~x∗) +O

(
(~x− ~x∗)2

)
where the �rst derivative is the Jacobian, de�ned as

d~F

d~x
=

(
dF1
dx1

dF1
dx2

dF2
dx1

dF2
dx2

)
and all the functions are to be evaluated at the point ~x∗ (where we are centering the Taylor expansion).
Given also that ~F (~x∗) = ~0, we have that for ~x near ~x∗,

~x′ ≈ J~x

where J is the Jacobian matrix we just de�ned. So near the equilibrium, this ODE looks just like a
homogeneous, linear system with constant coe�cients! All the analysis above then carries through and
we can talk about equilibria being saddles, nodes, spirals, and so on.

If this revs your engine, take MAT 119 next time it's o�ered. The A quarter starts with this stu�,
and the B quarter gets into chaos theory.
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