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First Order Equations

Linear

A linear �rst-order di�erential equation has the form

y′ + p(t)y = g(t)

for some functions p(t) and g(t). The general solution is obtained using an integrating factor:

y =
1

µ(t)

 tˆ

t0

µ(s)g(s)ds+ c

 , where µ(t) = exp

(ˆ
p(t)dt

)

Separable

Some nonlinear �rst-order equations are of a form that allows them to be solved exactly by integration. These
are equations that can be written in the form

f(y)
dy

dt
= g(t)

Note that f need not depend linearly on y. If a di�erential equation can be written in the form above, we can
solve it by integration

f(y)dy = g(t)dt =⇒
ˆ
f(y)dy =

ˆ
g(t)dt

This will give an algebraic equation involving both t and y; this equation will specify a curve in the ty-plane,
but it will not, in general, be possibe to write y as a function of t explicitly.

Autonomous

A di�erential equation is called autonomous if it can be written in the form

y′ = f(y)

Every autonomous DE is separable, and can be solved by the following integralˆ
dy

f(y)
=

ˆ
dt

Solutions to �rst-order autonomous equations cannot oscillate. This fact can be seen by looking at the phase
line.
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Second Order

Classi�cation and Structure of Solution Space

A linear second order DE is of the form

L[y] = y′′ + p(t)y′ + q(t)y = g(t)

where L denotes the di�erential operator that takes in the (twice di�erentiable) function y and outputs the
function y′′ + p(t)y′ + q(t)y. The de�ning property of a linear DE is that

L[αy1 + βy2] = αL[y1] + βL[y2]

for any constants α, β, and any (twice di�erentiable) functions y1, y2. A linear, homogeneous second order DE
is of the form

L[y] = y′′ + p(t)y′ + q(t)y = 0

The most important property of a homogeneous linear DE is that for any two functions y1 and y2 that are
solutions, any linear combination of y1 and y2 is also a solution, because

L[αy1 + βy2] = αL[y1] + βL[y2] = 0

A pair of functions {y1, y2} that are both solutions to a linear, homogeneous DE is said to comprise a fundamental

set of solutions if any solution y the DE can be written in the form c1y1 + c2y2, for some constants c1, c2. To
check if a given pair of functionss comprises a fundamental set of solutions, we compute their Wronskian, which
is de�ned as

W [y1, y2] =

∣∣∣∣ y1 y2
y′1 y′2

∣∣∣∣ = y1y
′
2 − y2y′1

The Wronskian of two solutions is nonzero if and only if they comprise a fundamental set of solutions. This is
a consequence of considering the problem of determining c1 and c2 such that c1y1 + c2y2 satis�es an arbitrary
pair of initial conditions, y(t0) = a, y′(t0) = b.

A DE is said to have constant coe�cients if the coe�cient functions p(t) and q(t) are constants. The most
general form of a linear, homogeneous, constant coe�cient, second order DE is

ay′′ + by′ + cy = 0

Its solutions depend on the roots of the characteristic polynomial

ar2 + br + c = 0

The roots may be either real and distinct, complex, or repeated. In these cases the fundamental sets of solutions
can be taken to be:

• Real and distinct: y1 = er1t, y2 = er2t

• Repeated: y1 = ert, y2 = tert

• Complex: r = a± bi, then y1 = eat cos bt, y2 = eat sin bt
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Nonhomogeneous Equations

If yp(t) is any solution to the nonhomogeneous equation

y′′ + p(t)y′ + q(t)y = g(t)

then any other solution is of the form y(t) = yp(t) + yc(t), where yc(t) is a solution to the corresponding

homogeneous equation, which is obtained by replacing g(t) by zero;

y′′ + p(t)y′ + q(t)y = 0

We say that yp is a particular solution, and yc is a complementary solution. If we know a fundamental set of
solutions to the corresponding homogeneous equation, we simply need to �nd one solution to the nonhomogeneous
equation in order to know the general solution. We have studied two main methods for doing this:

Undetermined Coe�cients

This is a guess-and-check method that is used when the corresponding homogeneous equation has constant
coe�cients, and the nonhomogeneous term, g(t), is �simple� - this means sums or products of polynomials,
exponentials, or trig functions. Based on the form of g(t), we make a guess at yp(t) that includes some number
of undetermined coe�cients, substitute this guess into the DE, and solve for the values of these coe�cients that
make the equation true. The following table outlines what to guess given various g(t):

g(t) Guess at yp(t)

Pn(t) = ant
n + · · ·+ a1t+ a0 ts (Ant

n + · · ·+A1t+A0)
Pn(t)e

at ts (Ant
n + · · ·+A1t+A0) e

at

Pn(t)e
at

{
sin bt

cos bt
tseat [(Ant

n + · · ·+A1t+A0) cos bt+ (Bnt
n + · · ·+B1t+B0) sin bt]

where s denotes the smallest integer (either 0,1, or 2) that ensures that no term in the guess is a solution to
the corresponding homogeneous equation.

Variation of Parameters

This is an explicit method that is applicable in more general situations than undetermined coe�cients. However,
it requires that we �rst know a fundamental set of solutions {y1, y2} to the corresponding homogeneous equaiton.
In this case, the general solution to

y′′ + p(t)y′ + q(t)y = g(t)

is

y = −y1(t)
ˆ

y2(s)g(s)

W [y1, y2](s)
ds+ y2(t)

ˆ
y1(s)g(s)

W [y1, y2](s)
ds

where the inde�nite integrals denote any antiderivative. The freedom in choice of antiderivative (i.e. choice of
constant of integration) is the same as the freedom we have to add any complementary solution.
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Laplace Transform

The Laplace transform is a gadget that eats functions and spits out other functions. It is de�ned by the formula

L[f(t)](s) =
∞̂

0

e−stf(t)dt

whenever the integral converges. Typically when a function is denoted by a lowercase letter, its Laplace transform
is denoted by the corresponding uppercase letter. For example, we typically write L[y(t)] = Y (s). The Laplace
transform has the important property that if f is di�erentiable and both f and f ′ have Laplace transforms, then

L[f ′] = sL[f ]− f(0)

which is a consequence of integration by parts. Applying this formula n times gives

L[f (n)] = snL[f ]− sn−1f(0)− sn−2f ′(0)− · · · − sf (n−2)(0)− f (n−1)(0)

where f (n) denotes the nth derivative of f . This property allows us to transform a linear, constant coe�cient
initial value problem (of any order!) into an algebraic equation which we can solve for Y (s), the Laplace transform
of the solution. We �nd the solution itself by inverting the transform by use of a table. This step will often
involve some straightforward, but tedious, algebra; for instance, partial fraction decomposition and completing
the square.

Systems of DE

Just like we can have systems of algebraic equations, whose solutions are lists of numbers, we can have systems
of di�erential equations, whose solutions are lists of functions. We will often use vector notation for such lists of
functions;

x(t) =


x1(t)
x2(t)
...

xn(t)


A generic system of DE then has the form

x′(t) = F(x, t)

where F is a vector-valued function, depending possibly on both x and t. Just as in the scalar case, we can
classify systems of DE.

A system of DE is linear if it can be written as

x′(t) = A(t)x(t) + g(t)

where A(t) is a matrix, and g(t) is a vector (both of which may depend on t). A system of DE is called
homogeneous if the g(t) term is zero; that is,

x′(t) = A(t)x(t)

Linearity and homogeneity for systems have the same consequences as they do for scalar DE's. In particular,
any linear combination of solutions is also a solution. Likewise, we can talk about a fundamental set of solutions
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to a system of DE. This is a set {x(1)(t),x(2)(t), . . . ,x(n)(t)} of n di�erent solutions to the system so that any
solution x(t) can be written as

x(t) = c1x
(1)(t) + · · ·+ cnx

(n)(t)

for some set of constants c1 . . . cn. We can check if a list of solutions has this property by computing their
Wronskian, de�ned as the determinant of the n× n matrix, each of whose columns is one of the solutions;

W [x(1)(t),x(2)(t), . . . ,x(n)(t)] =

∣∣∣∣ x(1)(t) x(2)(t) . . . x(n)(t)
↓ ↓ ↓

∣∣∣∣
This is a consequence of considering the problem of �nding constants c1, . . . , cn so that x(t) =

∑
cix

(i)(t) satis�es
an arbitrary set of initial conditions x(t0) = a. Finally, a system of DE is said to have constant coe�cients if
the coe�cient matrix A does not depend on time. Linear, homogeneous systems with constant coe�cients are
those that we will �gure out how to solve.

Finding solutions to Systems of DE

As stated above, we'll consider solving �rst order, linear, homogeneous systems with constant coe�cients. We
begin, as we have done many times before, by guessing the form of the solution. In this case the guess is

x(t) = aeλt

where a is some constant vector and λ is a constant scalar. If such a function is a solution of the system
x′(t) = Ax(t), it follows that a is an eigenvector of A with eigenvalue λ. Hence the spectrum of A (that is,
its eigenvalues and eigenvectors) determine the behavior of solutions. We can break down the possibilities into
cases:

• All λ are real and distinct.

� In this case, the corresponding eigenvectors are linearly independent, and the functions x(i) = a(i)eλit

form a fundamental set of solutions. Here a(i) denotes an eigenvector of A having eigenvalue λi.

• Two or more λ are complex

� When the matrix A has real entries, complex eigenvalues occur in conjugate pairs, and the correspond-
ing eigenvectors are also complex, and occur in conjugate pairs. We can then write a complex-valued
solution

x(t) = (a+ ib)e(λ+iµ)t = u(t) + iv(t)

and invoke the principle of superposition to conclude that each of u(t) and v(t) is a real-valued
solution.

• Some λ are repeated

� This is analogous to the case of repeated roots of the characteristic equation, and involves some tricks
we haven't had time to cover.
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The neatest thing we just barely didn't get to

Recall that in the �rst week of class, we saw that the equation

y′ = ay

has the solution
y = y0e

at

where y0 = y(0) is an initial condition. Analogously, for a diagonalizable matrix A, the system

x′(t) = Ax(t)

has the solution
x(t) = eAtx0

where x0 is the vector of initial conditions; x(0) = x0. At this point you should be seriously wigged out - that
is a matrix inside an exponent. But it's �ne; we can de�ne it using the Taylor series for ex. Recall:

ex =

∞∑
n=0

xn

n!

This series has an in�nite radius of convergence. Since we know how to raise a matrix to a power (just multiply
it by itself), and mutliply it by scalars (e.g. 1/n!), we can insert the matrix At in place of x, to get

eAt =

∞∑
n=0

(At)n

n!
=

∞∑
n=0

An
tn

n!

Now we can make sense of the function x(t) = eAtx0. Di�erentiating it with respect to t gives

d

dt

[
eAtx0

]
=

d

dt

[ ∞∑
n=0

An
tn

n!

]
x0 =

( ∞∑
n=0

An
d

dt

[
tn

n!

])
x0

The n = 0 term in the sum vanishes, and we're left with

d

dt
x(t) =

∞∑
n=1

An
tn−1

(n− 1)!
x0 =

∞∑
n=0

An+1 t
n

n!
x0

where the second equality comes from shifting the index. Factoring out a factor of A, we get

d

dt
x(t) = A

∞∑
n=0

An
tn

n!
x0 = AeAtx0 = Ax(t)

So the claimed solution indeed satis�es the system of DE! It is also easy to check that x(0) = x0 as advertised.
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