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the inferred right-hand side. . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.4 Histogram of training errors, coded by which modules are phase cohesive.

For each of the 50 × 50 numerical experiments, we determine whether or

not each of the three modules is phase cohesive with angle π. We observe

five different cases: i) none of the modules is phase cohesive, ii) module 2

is phase cohesive, iii) modules 2 and 3 are phase cohesive, iv) modules 1,

2, and 3 are all phase cohesive, and v) the whole system is phase cohesive.

The distribution of training errors for each of these five cases is shown here

in a different color. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

-vi-



3.5 Comparison of training error for the coarse-grained model obtained by

coarse graining according to the structural partition (three modules of

five nodes each, orange) to the dynamical partition (variable number of

modules, found as the coarsest possible partitioning into phase cohesive

groups, blue). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.6 Training fit for a coarse-grained model obtained according to the phase

cohesive partition, coded by properties of the partition. In blue are cases

where the system decomposes into two clusters, one of which contains only

a single node. We see clearly that these cases comprise the most extreme

errors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.7 Visualization of training fit in the worst case observed in the 50 × 50

numerical experiments on the fifteen-node network. In this case one cluster

consists of a single oscillator. In orange is the time derivative of the coarse-

grained variable corresponding to the singleton cluster, and in blue is the

time derivative of the coarse-grained variable corresponding to the 14-node

cluster. Solid lines are ground truth, and dashed lines are the inferred right-

hand side evaluated on the coarse-grained time series. The large difference

in the sizes of the clusters induces a separation of scales in the derivative,

which we can clearly see. . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.8 Histogram of training errors for the coarse-grained model corresponding

to the dynamics-based partition, coded by whether or not the resulting

partition refines the structural one. Notice that the maximum error in the

case that the dynamical partition refines the structural one is far below

the overall maximum. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.9 The worst case scenario for fitting a coarse-grained right-hand side in the

case where the phase cohesive partition is a refinement of the structural

partition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

-vii-



3.10 Example of the validation procedure described in the text. Blue curves

are trajectories of the three cluster order parameters in a 15-node network

consisting of three modules of five nodes each. Parameters of equation 3.8

were inferred from these data for t ∈ [0, Ttrain] = [0, 300] and the resulting

equations were integrated for t ∈ [Ttrain, Tf ] = [300, 1000] (red curves).

Note nearly-exact overlap. . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.1 Demonstration of the performance of the approximate ODEs obtained by

the treelike approximation under the assumption of degree-dependent seed-

ing. Parameters are identical to those used to create Fig. 1 in [29]. Here

we display both the total fraction of active nodes (left) and the rate of

increase of the number of active nodes (right) in each module, for both

uniform (top) and degree-targeted seeding (bottom). Solid curves are so-

lutions of the ODE system Equation 4.20, and dashed curves are the cor-

responding quantities in a direct numerical simulation of linear threshold

dynamics on a network of size N = 5× 105, averaged over 10 realizations

of the network. nodes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.2 As in Figure 4.1, but with threshold θ = 0.21. Note that with uniform

seeding (top), the cascade does not reach the whole network, while for

maximum-degree seeding, it does. Again we see excellent agreement be-

tween numerical results and analytic predictions. . . . . . . . . . . . . . 67

-viii-



4.3 Summary of the joint effect of modularity and nestedness on the extent of

cascade spreading, under both uniform and degree-targeted seeding. Color

indicates extent of the eventual cascade, as a fraction of the whole network;

yellow is 1, green is 0.5, and blue ranges between 0 and 0.3. The green

region, present in every panel for µ . 0.2, corresponds to the cascade

completely covering the first module (where the seed nodes are located)

and not spreading at all to the second. The blue region corresponds to

the situation that the cascade spreads to only part of the first module.

Parameters used here are: θ = 0.4, k = 20. In these figures, ρ0 is the

fraction of the first module that is infected, which is off from the notation

in [48] by a factor of two. The top set of heatmaps is from iteration of the

equations (4.19)–(4.17), and the bottom set is from averaging over direct

simulation of the network dynamics, on networks of size N = 2.5 × 104,

averaged over ten realizations. . . . . . . . . . . . . . . . . . . . . . . . 69

-ix-



Abstract

Collective Behavior in Dynamics on Networks

This dissertation addresses three problems concerning collective behavior in dynamics

on networks: coupling in a heterogeneous population of oscillators under global forcing,

low-dimensional effective laws of motion for oscillator networks, and degree-targeting the

spread of cascades on modular, degree-heterogeneous networks. We refer to these problems

as coupled entrainment, coarse graining, and degree-targeting cascades, respectively.

From coupled entrainment, we learn that there is not just one way to measure order

in a population of dynamical units, just as there is no unique way to achieve order in

a population of dynamical units. Different mechanisms an give rise to different types of

order. And, these types can be both competitive and synergistic with one another.

From coarse graining, we find that under certain special assumptions, it is possible to

leverage the presence of collective behavior to simplify a dynamical model of a system.

From degree-targeting cascades, we learn that it can be possible to average over a highly

heterogeneous population and arrive at an accurate representation with very few degrees

of freedom. Given that reduced model, we can assess in detail the interplay of network

structure and a seeding policy in determining the spread of an activation cascade.

In all cases, analytical insight comes from the existence of a low-dimensional object

occupying a privileged position in a high-dimensional state space, and the existence of

that low-dimensional object is crucially related to symmetries (broadly construed) of the

underlying high-dimensional system.

In coupled entrainment, the key calculation is a linear stability analysis of a particular

fixed point of an infinite-dimensional dynamical system. The fixed point in question

is already part of a special family of states in which an oscillator with a given natural

frequency is pinned to a given phase. The linearization in question has an eigenvalue −1/π

with infinite degeneracy and a single eigenmode with eigenvalue −1/π+K/2 that passes

through zero as the parameter K is increased. Both stages of simplification relied on the

delicate symmetry built into the natural frequency distribution and the forcing function.
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Specifically, the choice of natural frequencies, together with the forcing function, brought

about a fixed point in which the phases of all oscillators were spread around the unit circle

in a perfectly symmetrical way.

In coarse-graining, existence of a low-dimensional attractor in a large (but not infinite)

oscillator system is the central theme. Dimension reduction analyses that are valid in the

N →∞ limit guide our search in finite dimensions, and we find reasonable and numerically

computable conditions under which such dimension reduction is possible. Here we find

that identifying which degrees of freedom admit a reasonable model relies not only on

knowing which phases form cohesive groups, but also which oscillators are equivalent to

which others in terms of their couplings to other oscillators. The result is joint insight

into mesoscale synchronization in the Kuramoto model, on the one hand, and general

constraints on discovering low-dimensional dynamical models, on the other.

Finally, in studying cascades, the underlying dynamics are discrete, which differen-

tiates them from the oscillators considered previously. Nonetheless, we find that pass-

ing to probabilities of activation leads us to a continuous model that can be drastically

compressed due to statistical regularities (or symmetries) of the network that hosts the

dynamics. In this case, the symmetries are that nodes in the same module are statistically

equivalent in terms of their probability to be connected to an active node.

-xi-



Acknowledgments

It’s often said that it takes a village to raise a child. It’s less often said, but just as

true, that it takes a village to do a PhD.

First and foremost, thanks go to my parents, Lois and Jerry, for laying the foundation

and supporting me every step of the way; and to my brother Daniel, for catalyzing an

excitement for math that continues to this day.

Thanks to my professors at RPI. In particular, thanks to Jim Napolitano for setting the

bar as an educator and for his much-needed encouragement towards intellectual maturity

and self-direction.

Thanks to my Los Alamos “A-team”: Anatoly Zlotnik, Andrey Lokhov, Andrew Sorn-

borger, and Aric Hagberg. My experiences with all of you at LANL helped me find my

legs as a researcher leading a project and gave me crucial perspective on scientific life

outside of a university environment.

Thanks to my thesis committee; to Jim Crutchfield, for serving as a role model of

sustained commitment to big ideas; to Tim Lewis, for helping me see how to establish

my identity as an applied mathematician; and finally, to my advisor, Raissa D’Souza, for

her consistent commitment to my intellectual and professional growth, and for believing

in me even (and especially) when I seemed determined not to believe in myself.

Thanks to my coauthors on the work contained herein:

• Chapter 2 was done in collaboration with Anatoly Zlotnik and Aric Hagberg

• Chapter 3 was done in collaboration with Anatoly Zlotnik and Andrey Lokhov

• Chapter 4 was done in collaboration with Weiran Cai and Raissa D’Souza

Thanks to the Santa Fe Institute and the broader SFI community, especially the

students, staff, and faculty who helped make the 2018 Complex Systems Summer School

a reality. The connections and conversations I’ve had via SFI have been a major part of

my inspiration to pursue an academic career.

-xii-



Last, but not least, thanks and love to my Davis family. You’ve all made the last six

years not just bearable, but a true joy.

• Be good

• Don’t panic

• Stay hydrated

-xiii-



Chapter 1

Introduction

1.1 What’s the Big Idea?

This is where I announce my grand vision, as I see it today.

My central intellectual interest is to understand how the world got to be the way

it is. An important part of that is to figure out what are the basic building blocks

of matter and energy, and what relations they have. Rather beyond the scope of that

question is the question of how those pieces come together to make atoms, molecules, cells,

planets, humans, sailboats, fire extinguishers, and conscious thought (not necessarily in

that order). Even if we know exactly the fundamental laws of the universe, we could

hardly claim to “understand” everything that comes from them in any truly satisfying

sense.

That’s why I’m interested in collective behavior. Taking seriously the idea that a

collection of simple-in-isolation units interacting with one another may produce a new

type of object opens the door to quantitatively and intuitively understanding how the

complexity of the human-scale world emerges from the relative simplicity of smaller-scale

building blocks when you put enough of them in one place.

To make progress in understanding collective behavior requires looking deeply at con-

crete instantiations of systems that exhibit it. The process of posing and answering such

concrete questions has been the central challenge of my PhD research. This dissertation

presents three iterations of that process, each in a slightly different direction and with
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different conclusions. I will now describe each of them briefly in the context of collective

behavior.

1.2 Stability of entrainment of a continuum of cou-

pled oscillators

For at least the last 40 years (starting with Kuramoto [41]), synchronization has been

an extraordinarily fruitful test-bed for fundamental studies of the mechanisms underly-

ing collective behavior. In short, synchronization refers to a case in which a system of

oscillators interacts in such a way as to cause their phases to align. Perhaps the most

famous result is due to Kuramoto, and gives the value of the coupling strength when

synchronization begins in terms of the heterogeneity of oscillators’ natural frequencies.

Formally,

Kc =
2

πg(0)
(1.1)

where g(ω) is the probability density function from which the oscillators’ natural frequen-

cies ω are independently drawn, assumed to be unimodal and symmetric about ω = 0.

Kuramoto’s result predicts phase coherence will arise due to the oscillators’ all-to-all

pairwise interactions and in spite of the oscillators’ heterogeneous frequencies. Intuitively,

we can think of this process as being bottom-up, or self-organized.

This is, however, only one route to coherence. Another way, pioneered by Adler [2]

and exploited by Zlotnik and coauthors [79] to produce coherent motion in a heteroge-

neous population, is to apply a common driving signal at a fixed target frequency. If an

oscillator’s frequency is not too far from the driving frequency, then the oscillator will

lock to the driving frequency and have an average phase offset related to the frequency

detuning (difference between natural and driving frequencies). Likewise, if all oscillators’

frequencies are not too far from the driving frequency, then the common driving signal

will cause the entire population to move at a single frequency.

Clearly, this mechanism is of a different character than that of coupling; the oscillators

are doing the same thing because they are each made to do that same thing. In other

words, coherence due to common driving may be characterized as top-down, or centralized.
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These mechanisms result in coherent motion in a population of oscillators, but there

are tell-tale differences. In particular, it is possible to have a situation where, under

the influence of common driving, every oscillator attains the same frequency but the

phases remain spread uniformly about the unit circle. In other words, while the system

is perfectly ordered in terms of frequencies, it is maximally disordered in terms of phases.

Mutual coupling attenuates phase disorder, and so this situation is a natural setting to

contrast bottom-up and top-down mechanisms of collective behavior.

1.3 Coarse-graining for coupled oscillators

The essence of this project is to take seriously the concept of new entities emerging in

the dynamics of interacting individuals. Again we use the setting of coupled oscillators,

because they offer great analytical understanding and are known to exhibit rich behavior

of the sort that we’d like to understand.

Pioneering work by Ott and Antonsen [52] established that in the thermodynamic

limit, populations of oscillators behave in such a way that their global average evolves

in time according to an autonomous differential equation. In other words, the intricate

dynamics of all the individual oscillators averages out and, to predict the future behavior

of the global mean field, one only needs to know the global mean field itself (in addition

to some easily calculable constant parameters). Their results extend to the case when

coupling is not all-to-all, but shows a group structure; in this case, a similar equation

holds, but with one mean field for each group.

This fact has been exploited by, e.g., Skardal and coauthors [65] to study multiple

stages of synchronization in group-structured systems. Also of note, qualitatively similar

phenomena have been observed in dynamics on modular networks, such as the Ising model

and discrete spreading processes [29].

In this work, we take a complementary approach. Rather than using statistical ar-

guments that become exact in the thermodynamic limit, we consider the problem of

identifying coarse-grained variables, and differential equations that govern them, directly

from finite-dimensional time series data. Calculations suggest that equations of the same
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form as those derived in [52] should work, and we validate this conclusion with numerical

experiments.

1.4 Cascading extinctions in mutualistic networks

This project arose from a desire to understand collective behavior in terms of the prop-

erties of a network that connects a population of individuals. One of the most obvious

real-world examples of systems that show interesting collective behavior due to a nontriv-

ial interaction structure are ecosystems, where collective behavior can take the form of

drastic events such as cascading extinctions. One particular class of ecosystems that have

been fruitfully understood from a network perspective is mutualistic ecosystems: those

consisting of multiple types of individuals that interact in a mutually beneficial way. A

prototypical example of a mutualistic partnership is that between a plant and its polli-

nator; examples also appear in other contexts, such as between clothing designers and

manufacturers [61].

Two network-structural tropes have been observed among many mutualistic networks:

nestedness [11] and modularity [51]. Nestedness is the property that the neighbors of any

given node tend to be a subset of the neighbors of any node with higher degree. To

a first approximation, nestedness is best explained by a broad degree distribution [37].

Modularity is the property that the nodes can be divided up into groups such that most

of the links connect nodes in the same group, with comparably few links connecting nodes

in different groups [49].

The goal of this project is to understand the joint impact of nestedness and modularity

on spreading-type processes on a network, such as cascading extinctions. To do this, we

study the linear threshold model, introduced by Watts [71], in which nodes are either

active or inactive, and become active if at least some fraction of their neighbors are

active. Once active, a node does not become inactive. In an ecological interpretation, the

“active” or absorbing state is extinction, and a species goes extinct if greater than some

fraction of its mutualistic partner species are extinct.

A low-dimensional approximation of these dynamics on a modular network with an
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arbitrary degree distribution in each module was obtained by Gleeson in [29]. This ap-

proximation rests on the assumption that the network is large and locally tree-like, and

that a certain fraction of the nodes in each module are selected uniformly at random

to be initially active. We extend Gleeson’s framework to model initially-active nodes

which are selected with a probability that depends on their degree. This generalization

still allows for uniform seed selection, or, for instance, targeting maximum- or minimum-

degree nodes. Remarkably, our extended formulation does not require keeping track of

any more dynamical variables than Gleeson’s original framework, although the number of

parameters is larger.

We then use this analytical framework for degree-targeted seeding to explore the ef-

fect of degree targeting on cascade spreading in a modular network. Nematzadeh and

coauthors [48] have shown that in a two-module network wherein a cascade is initiated

in one module, a certain fraction of inter-module links is required to spread the cascade

to the whole network. However, too high a proportion of inter-module links renders the

cascade unable to cover even the entire first module. They refer to this phenomenon as

the existence of “optimal modularity” for information diffusion. We extend the results

of [48] and show that by seeding the highest-degree nodes, the range of optimal modu-

larity is substantially widened, and that the strength of that effect increases with degree

heterogeneity.
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Chapter 2

Stability of entrainment of a

continuum of coupled oscillators

This chapter corresponds closely to the article:

Snyder, J., Zlotnik, A., & Hagberg, A. (2017). Stability of entrainment of

a continuum of coupled oscillators. Chaos: An Interdisciplinary Journal of

Nonlinear Science, 27(10), 103108. https://doi.org/10.1063/1.4994567

2.1 Abstract

At least two well-understood approaches can be applied to impose coherent behavior

in a diverse population of dynamical systems: the “top-down” approach of applying a

common driving signal, and the “bottom-up” approach of imposing pairwise coupling.

While these approaches yield similar behaviors, their precise characteristics can put them

in opposition. In this chapter we study a situation that highlights both the synergy and

tension that can exist between driving and coupling in collections of oscillators.

2.2 Introduction

Coupled oscillators are a paradigmatic example of a system that exhibits collective be-

havior, owing to their rich phenomenology and relative tractability in certain limits and

special cases. Notably, coupled oscillator systems support coherent behavior by multiple

mechanisms; we think especially of the bottom-up process of synchronization due to mu-
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tual coupling, and the top-down process of entrainment to an external drive. We examine

the design of the entrainment process for an uncountably infinite collection of coupled

phase oscillators that are all subject to the same periodic driving signal. In the absence

of coupling, an appropriately designed input can result in each oscillator attaining the

frequency of the driving signal, with a phase offset determined by its natural frequency.

We consider a special case of interacting oscillators in which the coupling tends to desta-

bilize the phase configuration to which the driving signal would send the collection in

the absence of coupling. In this setting we derive stability results that characterize the

trade-off between the effects of driving and coupling, and compare these results to the

well-known Kuramoto model of a collection of free-running oscillators.

There is a long history of studying the emergence of coherent motion in oscillators us-

ing phase model representations, dating back to Winfree [74, 75] and Kuramoto [41, 43].

The canonical examples that were posed in these early studies have been widely examined

in subsequent work [12], because they exhibit a rich phenomenology while admitting beau-

tiful mathematical descriptions within an extensive range of analytical settings. While

original studies focused on mutual entrainment [41], in which coherent motion arises

purely from interactions between individual units, more recent studies have investigated

the effect of externally-imposed coherence in the form of external driving.

A pioneering study of forced, coupled oscillations was performed by Sakaguchi [63],

who considered an infinite, heterogeneous, population of oscillators subject to global si-

nusoidal coupling and uniform sinusoidal forcing. By deriving a self-consistent equation

for the order parameter measuring phase alignment, Sakaguchi was able to predict tran-

sitions between regimes of incoherence, mutual entrainment, and forced entrainment.

These transitions were investigated in more detail using a linear stability approach [4].

The detailed nature of the bifurcations remained elusive, and suggested an underlying

two-dimensional structure which had yet to be exploited. This two-dimensional structure

was indeed discovered by Ott and Antonsen in their seminal work [52], which uncovered

a particular low-dimensional manifold that captures much of the asymptotic behavior of

a wide family of models of coupled phase oscillators; in particular, the forced Kuramoto
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model was identified as a possible application of this dimension reduction. Subsequent

work has shown that, under certain mild conditions, this manifold is globally attractive

[53, 54]. This reduction represents an enormous simplification, because in many cases

it permits closed-form evolution equations for the synchrony order parameter directly.

Building on the framework established by Ott and Antonsen [52], Childs and Strogatz

[15] were able study the dynamics of the forced Kuramoto model on the two-dimensional

attractive manifold, and found a complete picture of a system’s bifurcation structure. It

should be noted that studies of the effect of forcing in this context have almost exclusively

considered a sinusoidal forcing function, due to the analytical tractability of the resulting

model.

Beyond characterizing the phenomenology of natural and engineered complex oscillat-

ing systems, emerging applications in neural systems, electrochemistry, and power grid

engineering require new capabilities to control and manipulate the behavior of such phe-

nomena. Indeed, the ability to control a system is the ultimate validation of our under-

standing of its behavior. For oscillating systems, a general picture of frequency modulation

by external forcing was first laid out in 1946 by Adler [2], who derived equations describ-

ing the amount by which an external drive signal can shift an oscillator’s frequency and

amplitude. The idea of “injection locking” has since been of major importance in many

fields of engineering [60, 9]. One prediction made by Adler was that an oscillator driven

at a frequency different from its own may lock to the driving frequency, and exhibit a

phase shift relative to the drive signal which is determined by its natural frequency. For

the simple case considered originally, this function is sinusoidal. However, for a general

forcing function and a general phase oscillator higher harmonics may be present, as seen

in experiments and derived analytically [35, 78]. The general framework of using periodic

forcing signals to control the entrainment of nonlinear oscillating systems was exploited to

explore energy- and time-optimal control strategies for entrainment of one or more phase

oscillators [26, 77, 76]. The effect of coupling on the efficacy of these control strategies

remains unexplored.

A challenge in specifying the forcing input to control collections of coupled oscillators
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is that they are underactuated; the entire collection of similar dynamical systems with

possibly complicated individual behavior must be controlled using a small number of

inputs. To overcome this challenge we observe that the entrained or coherent state of

a controlled collection of oscillators is characterized not only by synchronization to a

forcing frequency, but also by the distribution of subsystems on the neighborhood of a

nominal periodic orbit. For a finite collection, it is possible to construct a forcing signal

to achieve precise control of the relative phases of an ensemble of structurally similar

oscillators with slight heterogeneity in frequencies [79]. With the understanding that

such “phase-selective control” is possible for small, finite collections, we examine how the

mathematical framework can be extended to continuum systems. Further, we examine

the effect of coupling between subsystems, which tends to drive phase differences to zero.

In this chapter we explore a continuum approximation of a very large collection of

coupled oscillators subject to a common periodic (but non-sinusoidal) forcing, so that

both coupling and forcing influence the collective behavior. Specifically, we consider a

situation in which the forcing drives individual phases to be maximally different (in a

certain precise sense), while the coupling tends to align the phases. To quantify the

trade-off between these two effects, we compute, as a function of the coupling strength,

the asymptotic stability of a fixed point in which the phases show no global alignment.

By finding the critical coupling strength above which this fixed point is unstable, we

demonstrate that mutual synchronization of entrained coupled oscillators occurs before

mutual synchronization of unforced coupled oscillators, despite the imposed diversity of

phases. Moreover, numerical experiments confirm that the external forcing has facilitated

phase alignment which is greater than that in the unforced case. Our results demonstrate

that measuring only phase alignment is bound to miss important information about the

global organization of a population of oscillators.
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2.3 Preliminaries

2.3.1 Entrainment of a single oscillator

Periodic motion abounds in the natural and engineered world, and a dynamical system

with a limit cycle solution provides a general mathematical model of phenomena that

exhibit such rhythms. The technique of phase reduction is a powerful method of analyzing

limit-cycle behavior that was pioneered by Arthur Winfree [74]. The basic idea is that

each point on a given periodic orbit can be assigned a “phase”, in such a way that the

phase advances with time at a constant rate. If the periodic orbit in question is a stable

limit cycle, then any point sufficiently close to the limit cycle will eventually approach it.

In this way, it is possible to define phase for points that are near, but not exactly on, the

limit cycle.

Using a perturbation approach, it is then possible to approximate, in the phase picture,

the response of a near-limit-cycle trajectory to an external force [41, 64]. The result is a

differential equation of the form

ψ̇ = ω + Z(ψ)u , (2.1)

where ψ ∈ [0, 2π) is the phase, “ ˙ ” denotes the derivative with respect to time, ω ∈ R

is the natural frequency of the limit cycle, u = u(t) is an external forcing, and Z(ψ) is

known as the phase response curve, or PRC. The PRC determines the change in phase

resulting from an infinitesimal external force applied at a given phase on the limit cycle

[47, 27].

From dynamics of the form (2.1), we can observe various phenomena, including en-

trainment (also known as injection locking). Entrainment is a situation in which an oscil-

lator is driven at a frequency different from its own natural frequency, and subsequently

moves at the frequency of the driving signal.

To see how entrainment can arise, consider a driving signal u(t) = v(Ωt), where v has

a period of 2π, so that Ω denotes the (angular) frequency of the driving signal. Inserting

this into (2.1) yields

ψ̇ = ω + Z(ψ)v(Ωt). (2.2)
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If Ω is not too far from ω, we suppose that ψ will behave as Ωt, plus a slowly-varying phase

offset. We formalize this supposition by making the change of coordinates ψ = Ωt + φ,

where φ now represents the phase offset. In the φ coordinate system, the dynamics now

read

φ̇ = ∆ω + Z(φ+ Ωt)v(Ωt), (2.3)

where we have introduced the frequency detuning ∆ω ≡ ω − Ω. Finally it is possible to

approximate (2.3) [34] by the time-averaged system

ϕ̇ = ∆ω + Λv(ϕ), (2.4)

where we have introduced the interaction function

Λv(ϕ) =

2π∫
0

Z(ϕ+ θ)v(θ)dθ, (2.5)

in the sense that there exists a change of variables ϕ = φ + h(ϕ, φ) that maps solutions

of (2.3) to those of (2.4).

The equation (2.4) is an especially simple one-dimensional, autonomous ODE. If the

equation ∆ω + Λv(ϕ) = 0 has a solution ϕ∗, then ϕ(t) = ϕ∗ is a fixed point solution of

(2.4); if, moreover, dΛv/dϕ(ϕ∗) < 0, then this fixed point is asymptotically stable. If this

is the case, then we say that the oscillator can be entrained by the driving signal.

2.3.2 Entrainment of an ensemble of oscillators

We next consider the case of forcing of many similar, but non-identical, oscillators by a

single driving signal [79]. By similar but non-identical, we mean that the oscillator all

have a common PRC, but heterogeneous natural frequencies ω. The phenomenon that we

wish to highlight in this context is frequency alignment without phase alignment. Note

that we do not yet consider any coupling between oscillators.

Suppose we have a system of N phase oscillators of the type described above, all

governed by the same PRC, Z(ψ), but having distinct natural frequencies, {ωi}. If these

oscillators are simultaneously subject to the same periodic force v(Ωt), then the system

can be described by the equations

ϕ̇i = ∆ωi + Λv(ϕi), i = 1, . . . , N , (2.6)
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where ∆ωi = ωi − Ω.

First, note that if (2.6) has an asymptotically stable fixed point solution ϕ∗i for every

i, then the population can display frequency alignment ; as t → ∞, the phase of the

ith oscillator will approach a constant offset of the driving phase Ωt. However, we can

immediately see that the phases themselves will, in general, be different, since the solution

to the fixed point equation ∆ωi + Λv(ϕi) = 0 depends on the frequency detuning ∆ωi.

This potential phase diversity is displayed in Fig. 2.1 for an example interaction function.

In what follows, we consider what happens if the phases of the oscillators are coupled to

one another.

Figure 2.1. An example of frequency locking with phase diversity. Diagonal black
line represents a possible interaction function, here a sawtooth function on the circle
[−π, π]. Bold horizontal line is the phase line for an oscillator of frequency detuning
∆ω, with arrows indicating direction of flow. Vertical dashed line indicates the position
of the asymptotically stable fixed point, equal to π times the frequency detuning.

2.3.3 The Kuramoto Model

To frame our study of phase coupling, we discuss some standard methods and results

relating to synchronization of phase oscillators. Kuramoto introduced a model of the
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form

ϕ̇i = ωi +
K

N

N∑
j=1

sin(ϕj − ϕi) , (2.7)

which was derived as a “simplest” model for a collection of self-sustained linearly-coupled

oscillators [41]. Here {ϕi} are the phases of N oscillators, {ωi} their natural frequencies

(which we allow to take any real values), and K > 0 is the strength of coupling.

This ODE can be instructively rewritten in the form

ϕ̇i = ωi +KR sin(Φ− ϕi) , (2.8)

where we have used the synchrony R ∈ [0, 1], and the average phase Φ ∈ [0, 2π), first

introduced by Kuramoto [41] and defined by the formula

ReiΦ =
1

N

N∑
j=1

eiϕj . (2.9)

In this sense, this form of coupling is mean-field in character, as each phase feels a force

determined by an average over the entire population.

The key features of this model are

1. The oscillators have differing intrinsic frequency: ωi 6= ωj ,

2. The coupling tends to drive phases towards the mean (provided K > 0, which we

assume throughout).

These two features are at odds with each other, and they undergo a trade-off at a

critical value of the coupling strength, K = Kunf
c (where we use the superscript “unf” to

emphasize that this is the critical coupling strength in the unforced case). If K < Kunf
c the

population of oscillators does not show global alignment towards any particular phase,

while for K > Kunf
c , this situation breaks down and a subset of the oscillators attains

the same frequency and group together in phase, establishing a preferred direction and a

nonzero value of the synchrony R.

To make these statements precise it is useful to consider a mean-field approximation.

We suppose that the population of oscillators is large enough that averaging over this
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population is well approximated by averaging over a probability distribution that describes

the behavior of a typical oscillator. General background on the mean field Kuramoto

model can be found in various review articles [66, 1].

The main result we quote from the extensive body of literature on the Kuramoto

model is that in the limit of N → ∞, if the oscillators’ natural frequencies are drawn

at random from a probability distribution having density g(ω), unimodal and symmetric

about zero, then the critical coupling strength described above is given by

Kunf
c =

2

πg(0)
. (2.10)

The expression (2.10) can be taken as a precise quantification of the trade-off between

intrinsic disorder (g(0)) and coupling (K). The possibly surprising fact that Kunf
c depends

only on the value of g at the center of the distribution, and no other features of this

distribution, is because the first oscillators to synchronize are those at the center of the

distribution. The rest of the density g then determines the growth of R with K > Kunf
c .

In what follows, we will define a new model, show that it exhibits behavior that is

qualitatively similar to that of the Kuramoto model, and find the location of the cor-

responding critical point. The expression (2.10) will serve as reference to interpret our

results.

2.4 Model for Forcing of Coupled Oscillations

2.4.1 Finite N

We now formulate a model of a population of oscillators that exhibits both frequency

alignment by broadcast forcing and phase alignment by attractive coupling. Many similar

models have been developed [63, 46, 15, 52, 4], and our present formulation aims to

augment the rich existing literature.

In general, we can consider each oscillator to respond to external forcing according

to one phase response curve, and to respond to forcing from its neighboring oscillators

according to another phase response curve. That is,

ψ̇i = ωi + Ze(ψi)u(t) +
K

N

N∑
j=1

Zc(ψi)f(ψj) (2.11)
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where Ze is the PRC for external forcing, Zc is the PRC for coupling, and f() describes

the force an oscillator exerts on its neighbors as a function of its phase. The prefector

K/N allows us to adjust the coupling strength K in a way that allows comparison between

different values of N .

Assuming, as before, that u(t) = v(Ωt) with v having period 2π, we move into a

rotating reference frame with frequency Ω and average over one period of the driving

signal, obtaining the averaged equations

ϕ̇i = ∆ωi + Λv(ϕi) +
K

N

N∑
j=1

g(ϕj − ϕi) (2.12)

where ϕi,∆ωi, and Λv are defined as before (2.4) and

g(∆ϕ) = (2π)−1

2π∫
0

Zc(θ + ∆ϕ)f(θ)dθ

.

Clearly, many different systems may be defined in this form given appropriate choices

for Ze, Zc, v, and f . In order to exhibit the qualitative features of phase dispersion caused

by external forcing combined with phase alignment caused by coupling, while retaining

tractability, we assume that Zc and f are such that g(∆ϕ) = sin(∆ϕ).

Hence, we take a model of the form

ϕ̇i = ∆ωi + Λv(ϕi) +
K

N

N∑
j=1

sin(ϕj − ϕi), (2.13)

which can also be written

ϕ̇i = ∆ωi + Λv(ϕi) +KR sin(Φ− ϕi), (2.14)

with R and Φ defined as in (2.9).

As a first step, we choose {∆ωi} and Λv such that all oscillators can be entrained

individually, but the resulting phase offsets are as far as possible from alignment. This

can be achieved by setting

∆ωi =
2i

N
− 1 , (2.15)
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and

Λv(ϕ) =
−ϕ
π
, ϕ ∈ (−π, π]. (2.16)

We refer to the function defined in (2.16) as the sawtooth interaction function, or just

sawtooth, as it has a sawtooth shape when plotted on R (see Fig. 2.1).

The standard unforced Kuramoto model with this choice of natural frequencies has

been recently studied by Ottino-Löffler and Strogatz [55], who found the asymptotic

behavior of the locking threshold as N →∞, in agreement with results in the thermody-

namic limit obtained earlier by Pazó [57]. These results will serve as a reference to put

our findings in context. For now, we return to the forced case.

In the absence of coupling (K = 0), the ith oscillator will be driven to a phase offset

ϕ∗i defined by

∆ωi + Λv(ϕ
∗
i ) = 0 =⇒ ϕ∗i = π∆ωi =

2πi

N
− π. (2.17)

A straightforward calculation shows that for this phase configuration, the synchrony is

R = 0. For this reason, we refer to this fixed point as the desynchronized state. Another

term used to describe such a state is splay state. The point ϕ∗ = (ϕ∗i ) ∈ (−π, π]N is a

fixed point of the dynamics (2.13) for any value of coupling strength K.

In this respect, the situation is similar to the incoherent state discussed for the Ku-

ramoto model in Section 2.3.3, with the key difference that in this case, all oscillators

have attained identical frequency locking to the forcing input. We proceed to study the

asymptotic stability of this fixed point as a function of K, and obtain a critical coupling

strength Kc analogous to Kunf
c as defined in (2.10).

2.4.2 The N →∞ limit

Next we introduce a thermodynamic limit of the model (2.13), and the fixed point corre-

sponding to that defined in (2.17).

We replace our population of oscillators, formerly a collection of N individual oscilla-

tors with natural frequencies evenly spaced from −1 to 1, by a continuum of oscillators

with natural frequencies distributed uniformly on [−1, 1].

Because our state of interest for finite N is such that each oscillator’s phase is fixed at

a value determined by its natural frequency, we describe the state of our infinite system
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by a function ϕ(ω) that gives the phase of any oscillator having natural frequency ω. As

the system evolves the whole function ϕ(ω) will change in time, but for visual clarity we

omit writing the time-dependence explicitly when discussing fixed points. This sort of

formulation is used, for example, by Mirollo and Strogatz [46], except that oscillators are

indexed by their “pinning phase” rather than their natural frequency. We describe their

work in more detail in Section 2.8.

To determine fixed points, we must establish the dynamics in the appropriate contin-

uum setting. The intrinsic dynamics and effects of forcing remain the same, so we only

need to concern ourselves with the coupling term. For finite N , we simply had an average

over the population, and in the infinite setting, we use a mean-field approach to say that

averaging over the infinite population is equivalent to averaging over the distribution of

natural frequencies[66]. Our infinite-dimensional dynamics are

∂tϕ(ω) = ω + Λv(ϕ(ω)) +K

∫
R

g(ω′) sin(ϕ(ω′)− ϕ(ω))dω′ , (2.18)

where g is the density of the distribution of natural frequencies. These dynamics can be

rewritten in the form

∂tϕ(ω) = ω + Λv(ϕ(ω)) +KR sin(Φ− ϕ(ω)) , (2.19)

where R and Φ are the synchrony and average phase, defined for the infinite system as

ReiΦ =

∫
R

g(ω)eiϕ(ω)dω. (2.20)

Using the sawtooth interaction function introduced above (see (2.16)), and g(ω) = 1/2

for ω ∈ [−1, 1] and 0 elsewhere, the fixed point condition for ϕ now reads

0 = ω − ϕ(ω)

π
+K

1∫
−1

1

2
sin(ϕ(ω′)− ϕ(ω))dω′ , (2.21)

A straightforward calculation shows that the function ϕ(ω) = πω satisfies the condition

(2.21). Note that this is precisely the infinite-N analog of the finite-N fixed point defined

in (2.17). In what follows, we perform a linear stability analysis, finding the coupling

strength Kc at which this state becomes unstable.
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2.5 Stability Analysis of the Entrainment Phase Dis-

tribution

2.5.1 Finite N

We now analyze the stability of the fixed point ϕ∗ = (ϕ∗i ) ∈ (−π, π]N as defined in

equation (2.17).

Asymptotic stability of ϕ∗ is controlled by the spectrum σ(J) of the Jacobian J of the

right-hand side of (2.13) with respect to ϕ, evaluated at ϕ∗. If every element of σ(J) has

negative real part, then ϕ∗ is an asymptotically stable fixed point, and if any element of

σ(J) has positive real part, then ϕ∗ is unstable[67]. The matrix elements of J are

Jij =

(
Λ′v(ϕ

∗
i )−

K

N

∑
k 6=i

cos(ϕ∗i − ϕ∗k)

)
δij

+(1− δij)
K

N
cos
(
ϕ∗i − ϕ∗j

)
, (2.22)

where δij is the Kronecker delta.

Next we calculate the spectrum of J. By symmetry of the phase configuration, the

sum in the diagonal term is independent of i, and can be computed by noticing

0 =
N∑
k=1

cos(ϕ∗i − ϕ∗k)

= cos(ϕ∗i − ϕ∗i ) +
∑
k 6=i

cos(ϕ∗i − ϕ∗k) , (2.23)

where the first equality in (2.23) follows from symmetry (R = 0). Hence∑
k 6=i

cos(ϕ∗i − ϕ∗k) = − cos(ϕ∗i − ϕ∗i ) = −1 . (2.24)

This allows us to write the matrix entries in a simpler form, which will facilitate calculation

of eigenvalues,

Jij =

(
Λ′v(ϕ

∗
i ) +

K

N

)
δij + (1− δij)

K

N
cos
(
ϕ∗i − ϕ∗j

)
=
−1

π
δij +

K

N
cos(ϕ∗i − ϕ∗j) . (2.25)
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Note that we have used Λ′v(ϕ
∗
i ) = −1/π for all i, and δij + (1 − δij) cos(ϕ∗i − ϕ∗j) =

cos(ϕ∗i − ϕ∗j) for all i, j. We can write this in matrix form as

J = KC− 1

π
I , (2.26)

where I is the identity matrix and C is the matrix with entries Cij = N−1 cos(ϕ∗i − ϕ∗j).

This form makes it clear that to find the eigenvalues of J for arbitrary values of K, it

suffices to find the eigenvalues of C. To do this, we can write the action of C on an

arbitrary vector x as

(Cx)i =
N∑
j=1

Cijxj = N−1

N∑
j=1

cos(ϕ∗i − ϕ∗j)xj

= cos(ϕ∗i )

[
N−1

∑
j

cos(ϕ∗j)xj

]

+ sin(ϕ∗i )

[
N−1

∑
j

sin(ϕ∗j)xj

]
, (2.27)

where we have used the sum angle identity for cosine. The range of C is spanned by the

vectors e1 = (cos(ϕ∗i ))
N
i=1 and e2 = (sin(ϕ∗i ))

N
i=1. Each of these is in fact an eigenvector

with eigenvalue 1/2, which follows from

(Ce1)i = cos(ϕ∗i )

[
N−1

∑
j

cos(ϕ∗j) cos(ϕ∗j)

]
+ sin(ϕ∗i )

[
N−1

∑
j

sin(ϕ∗j) cos(ϕ∗j)

]

= cos(ϕ∗i )

[
N−1

∑
j

cos2(ϕ∗j)

]

= cos(ϕ∗i )

[
N−1

∑
j

1 + cos(2ϕ∗j)

2

]

=
1

2
cos(ϕ∗i ) =

1

2
(e1)i , (2.28)

and similarly for e2. Hence e1 and e2 are eigenvectors of C with eigenvalue 1/2, and all

other eigenvalues of C are zero.
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Finally, we can find the eigenvalues of J for arbitrary K. Notice that

λ ∈ σ(J) ⇐⇒ det(J− λI) = 0

⇐⇒ det

(
KC−

(
1

π
+ λ

)
I

)
= 0

⇐⇒ det

(
C−K−1

(
1

π
+ λ

)
I

)
= 0

⇐⇒ K−1

(
1

π
+ λ

)
∈ σ(C) . (2.29)

The eigenvalues λ of J are of the form λ = −1/π+Kµ, for µ ∈ σ(C) = {0, 1/2}. In other

words,

σ(J) =

{
−1

π
,
−1

π
+
K

2

}
. (2.30)

so the desynchronized state has a critical point Kc = 2/π and is linearly stable when

K < 2/π, and linearly unstable for K > 2/π.

2.5.2 The N →∞ limit

Finally we will perform a linear stability analysis of the desynchronized fixed point of the

infinite-N model (2.18).

To obtain a linearization of the dynamics near the fixed point ϕ∗(ω) = πω, we consider

an infinitesimal perturbation,

ϕ(ω) = ϕ∗(ω) + εη(ω) , (2.31)

where η : [−1, 1]→ R is a function which we take to be bounded and measurable.

First, inserting the form ϕ(ω) = ϕ∗(ω) + εη(ω) into equation (2.18) yields

∂t(ϕ
∗ + εη) =ω − ϕ∗(ω) + εη(ω)

π
(2.32)

+K

1∫
−1

1

2
sin (ϕ∗(ω′)− ϕ∗(ω) + ε (η(ω′)− η(ω))) dω′ . (2.33)

Next we expand the sine function in the integrand around the point ϕ∗(ω′)− ϕ∗(ω), and
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obtain

sin(ϕ∗(ω′)− ϕ∗(ω) + ε(η(ω′)− η(ω))) = sin(ϕ∗(ω′)− ϕ∗(ω))

+ ε cos(ϕ∗(ω′)− ϕ∗(ω))(η(ω′)− η(ω))

+O(ε2). (2.34)

From here we can read off the terms of order ε0 from each side of the equation, and

get

∂tϕ
∗ = ω − ϕ∗(ω)

π
+K

1∫
−1

1

2
sin (ϕ∗(ω′)− ϕ∗(ω)) dω′ , (2.35)

which clearly holds, as each side evaluates to zero for all ω ∈ [−1, 1].

Next, we gather terms of order ε1 and obtain (dropping the ε factor from all terms)

∂tη = −η(ω)

π
+K

1∫
−1

1

2
cos (ϕ∗(ω′)− ϕ∗(ω)) [η(ω′)− η(ω)] dω′. (2.36)

We can in fact simplify the integral above by noticing that

1∫
−1

1

2
cos (ϕ∗(ω′)− ϕ∗(ω)) [η(ω′)− η(ω)] dω′

=

1∫
−1

1

2
cos (ϕ∗(ω′)− ϕ∗(ω)) η(ω′)dω′ − η(ω)

1∫
−1

1

2
cos (ϕ∗(ω′)− ϕ∗(ω)) dω′

=

1∫
−1

1

2
cos (ϕ∗(ω′)− ϕ∗(ω)) η(ω′)dω′, (2.37)

which follows from the symmetry of the phase configuration ϕ∗. We then arrive at the

linearized dynamics

∂tη(ω) = − 1

π
η(ω) +K

1∫
−1

1

2
cos(ϕ∗(ω′)− ϕ∗(ω))η(ω′)dω′. (2.38)

Finally, we demonstrate the diagonalization of the linearized dynamics (2.38) in the

Fourier basis. As η is a function on [−1, 1], the appropriate Fourier basis is {eikπω|k ∈ Z},

so we write

η(ω) =
∑
k∈Z

ck(t)e
ikπω , (2.39)
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with the understanding that η is real-valued and the coefficients {ck} will obey ck = c−k,

where “·” denotes complex conjugate.

Next, we use ϕ∗(ω) = πω and Euler’s formula to write

cos (ϕ∗(ω′)− ϕ∗(ω)) =
1

2

(
eiπ(ω′−ω) + e−iπ(ω′−ω)

)
. (2.40)

Inserting (2.40) and (2.39) into (2.38) gives

∂tη(ω) = − 1

π
η(ω) +K

1∫
−1

1

4

∑
k∈Z

ck(t)e
ikπω′

(
eiπ(ω′−ω) + e−iπ(ω′−ω)

)
dω′. (2.41)

The only terms of the sum that do not vanish in the integral are those with k = ±1. For

the k = ±1 terms, the integral evaluates to

1∫
−1

1

4
c1(t)eiπω′

e−iπ(ω′−ω)dω′ =
1

2
c1(t)eiπω (2.42)

and likewise for k = −1. This shows that the coupling term acts on η diagonally in the

Fourier basis. Equating Fourier coefficients on each side of (2.41), we obtain

k = ±1: ∂tck(t) =

(
−1

π
+
K

2

)
ck(t) (2.43)

k 6= ±1: ∂tck(t) =
−1

π
ck(t) . (2.44)

Hence all Fourier components of the perturbation η except for the first decay expo-

nentially in time with a rate 1/π, while the first Fourier component will grow or shrink

with time, depending on the sign of −1/π +K/2. Specifically, if K < 2/π, then the first

Fourier mode also decays in time, while if K > 2/π, the first Fourier mode grows in time,

and the fixed point ϕ∗ is unstable. Hence we have, as in the finite-N case, the critical

coupling strength Kc = 2/π.

2.5.3 Interpretation

In both the finite- and infinite-dimensional versions of our model, we have found that

nonzero synchrony spontaneously develops as the coupling strength K exceeds Kc = 2/π.

We contrast this result with that for the corresponding unforced model,

ϕ̇i = ωi +
K

N

N∑
j=1

sin(ϕj − ϕi) , (2.45)
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where ωi = 2πi/N − π. While the standard result (2.10) does not directly apply in this

case, since the uniform density is not unimodal, it has been established by Pazó [57] that

the synchronization transition does in fact occur at Kunf
c = 4/π = 2/(πg(0)), which is

twice the value at which the forced model begins to show nonzero synchrony. This result

can be considered surprising, given that we have taken a forcing term, (2.16), that was

designed specifically to drive the system to a state of zero synchrony.

The situation becomes clearer if we compare the desynchronized state present in the

forced model to the incoherent state in the unforced model. The desynchronized state,

defined by ϕ(ω) = πω, has zero synchrony as measured by the order parameter R. It has

the property that every oscillator moves at equal frequency. This is in contrast with the

incoherent state of the unforced Kuramoto model, in which each oscillator moves at its

own natural frequency. Hence, in the sense of frequencies, the desynchronized state is far

more organized than the incoherent state, although this fact is missed by the synchrony

parameter R, which only measures instantaneous alignment of phases.

To understand the role of frequency alignment in establishing phase alignment, it is

instructive to consider again the standard unforced Kuramoto model. As we have already

quoted (2.10), the critical coupling strength is Kunf
c = 2/πg(0), where g is the density of

the distribution of natural frequencies. Intuitively, this expression captures the trade-off

between disorder in the natural frequencies and the ordering influence of coupling; the

tighter the distribution of natural frequencies, the larger g(0), and the smaller Kunf
c . In

other words, the coupling strength must be large enough to overcome the diversity of

natural frequencies in order to bring about a preferred phase.

In the desynchronized state of the forced model, the oscillators move with a single

frequency. Hence, there is no disorder to be overcome by the coupling. All that keeps

the system in the desynchronized state is the forcing, which appears as the eigenvalue

−1/π in the spectrum of the Jacobian. The second eigenvalue, −1/π + K/2, directly

captures the trade-off between the driving and the coupling, showing that the stability of

the entrained state is the only force that needs to be countered by coupling.
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2.6 Numerical Simulations

Here we present some numerical studies of the dynamical system (2.13), which confirm

the bifurcation at K = Kc = 2/π and illuminate the system’s behavior away from the

bifurcation point. To serve as reference, we also present data from numerical solution of

the system in the absence of forcing which is the Kuramoto model with evenly spaced

natural frequencies.

As we can see in Fig. 2.2, the synchrony R achieved at any value of the coupling

strength K greater than 2/π is greater in the forced case than in the unforced case. This

confirms the conclusion that entrainment by broadcast periodic forcing has brought the

system closer to synchrony, as measured by the order parameter R.

In the numerical simulations above, we find a sharp increase in the steady-state value

of R as a function of coupling strength K. To obtain a deeper understanding of the nature

of this transition and of the R > 0 fixed point of (2.13), we perform, for a range of N

values, numerical continuation of the R > 0 fixed point with respect to the bifurcation

parameter K using the numerical continuation software AUTO [23].

To perform numerical continuation with AUTO, it is first necessary to locate an at-

tractor (in our case, a fixed point) on the branch of interest. For each N from 3 to 100,

this was accomplished by numerical integration of (2.13) until stationarity with K = 0.7.

This value of K was chosen as it is greater than Kc = 2/π, and was observed to lead to

an R > 0 fixed point in all instances. The AUTO software was then instructed to locate a

connected family of fixed points in the joint parameter-state space R× [−π, π]N 3 (K,ϕ),

searching in the negative K direction from the user-supplied fixed point. AUTO equation

and constants files, including initial fixed point locations for 3 ≤ N ≤ 100, are available

upon request.

Representative results of the continuation just described are shown in Fig. 2.3. In

particular, we find that for any N = 3 . . . 100, the stable R > 0 branch undergoes a

saddle-node bifurcation at a coupling strength K = Ks(N) < Kc = 2/π. The unstable

portion of this branch exists for all K ∈ [Ks(N), Kc], and meets the R = 0 branch (i.e.

the desynchronized fixed point) transversally, precisely at K = Kc. Fig. 2.3 clearly shows,
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Figure 2.2. Synchronization R vs. coupling strength K. In the unforced case (dashed
line) the synchronization threshold is Kunf

c = 4/π. When forcing is added to drive the
system to a splay state of equally distributed phase angles it synchronizes at a lower
coupling strength Kc = 2/π. The data were generated from a simulation of N = 50
oscillators, starting from random initial conditions. For the forced case, integration
was carried out until the system was determined to be at a fixed point. For the
unforced case, integration was carried out until the system was determined to be in a
statistically steady state.

for N = 5, 10, 20, the existence of a bistable region [Ks(N), Kc], implying that hysteresis

is possible upon slow variation of K.

Moreover, we find that the shape of the bifurcation diagram in the bistable region

obeys a strong regularity across different values of N . In particular, the width of the

bistable region, namely Kc −Ks(N), follows a power-law scaling with N , with exponent

−1.67. Additionally, the value of R at the saddle-node point, which we denote Rs(N),

is observed to approach a value Rc = 1/2 from below, according to a power-law with

exponent −1.29 (see Fig. 2.4). We expect, therefore, that the infinite-N system will

exhibit a jump bifurcation at K = 2/π with a height (as measured by R) of 1/2, but

without a hysteresis loop.
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Figure 2.3. Bifurcation diagrams for the finite-N system showing the bistable region
as it depends on N . Solid lines indicate stable fixed points; dotted lines, unstable.
Data generated using AUTO software[70].

The situation is similar to that investigated by Pazó [57], who found the locking

threshold for the (unforced) Kuramoto model with evenly spaced natural frequencies. In

contrast with the typically considered case in which the density g of the natural frequency

distribution has g′′(0) < 0, leading to a continuous synchronization transition [66], the

uniform distribution has g′′(0) = 0, and the transition is discontinuous. Precise results

for the height of the jump, Runf
c , and the scaling of R − Runf

c for K > Kunf
c were derived

using a self-consistent approach[57].

Correspondingly, Pazó found, in the finite-N system, a phenomenon of global fre-

quency alignment for K below the infinite-N critical point, Kunf
c . Specifically, it happens

that as coupling strength is increased, oscillators with nearby frequencies lock to each

other, forming clumps, which then merge as K is further increased. The final merge
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Figure 2.4. (upper) The extent of the stable R > 0 branch below Kc = 2/π as
a function of N . The data show approximately a power law scaling N−1.67 for N
between 3 and 100. (lower) The difference between the value of synchrony R at the
saddle-node point and a numerically estimated critical value of Rc = 1/2 as a function
of N . The data show approximately a power law scaling N−1.29 for N between 3 and
100. Circles represent data measured from AUTO simulation, solid line is a power law
fit.
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occurs at K = Ks(N), which approaches Kunf
c from below as N → ∞, according to

Kunf
c −Ks(N) ∼ N−µ with µ ≈ 3/2. We should note that for finite N , the transition in

the unforced case is not hysteretic, as it is in the forced case.

2.7 Conclusions

We have explored, using an idealized model, the interplay between two ways in which a

population of phase oscillators may be caused to behave coherently: common periodic

forcing and attractive coupling. Based on the synchrony order parameter, R, forcing and

coupling can appear to be at odds; the forcing drives R towards zero while the coupling

drives R towards one. However, as we demonstrate both analytically and numerically, this

view is inherently limited, since for K above Kc = 2/π, the forced system exhibits greater

phase alignment than the corresponding unforced system. An intuitive explanation for

this mismatch is that the parameter R measures only phase alignment, and is prone to

miss the necessary precondition of frequency alignment.

Though we have gained considerable intuition from the results already obtained, there

is more work to be done. First, we are still lacking analytical understanding of the upper

branch of solutions, which would include an expression for the height of the jump and the

scaling of R with K above the jump (see Fig. 2.3).

Another set of questions involves the (in)feasibility of the sawtooth interaction function

Λv (defined as Λv(ϕ) = −ϕ/π for ϕ ∈ (−π, π] (2.16)). A simple argument reveals that

for any integrable forcing waveform v ∈ L2(0, 2π), the corresponding interaction function

Λv will be continuous on S1, a condition which the sawtooth does not satisfy. It remains

unexplored to what degree the results presented here may be approximated by interaction

functions that approximate a sawtooth. One could investigate the scaling of dynamical

properties with the energy of the input signal used.

Techniques for analysis and control of entrainment processes can be used to examine

and even manipulate numerous processes in biology [68]. In addition to developing an

initial mathematical framework for characterizing stability of coherence phase structures

in a continuum of interacting oscillators, our work presents a potential path towards ad-
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dressing a compelling biological application. Specifically, although some disagreement

about the nature and phenomenology of epilepsy exists in the neuroscience literature

[36], studies in animal models have indicated that control of synchronization of neural

dynamics can mitigate epileptiform activity [31]. It is understood that neural stimula-

tion is an underactuated system because one or a few electrodes are used to control the

mean field of a very large collection of interacting neurons, which for practical purposes

may be approximated by a continuum [16]. The ability to characterize the stability of

phase decoherence in continuum models of general coupled oscillators could determine

the possibility of developing effective desynchronizing stimuli for treatment of epilepsy.

The criterion that is derived in Section 2.5.3 and validated by numerical experiments in

Section 2.6 could in principle be tested experimentally [35].

2.8 The relationship to Previous Work

Finally, we discuss the relationship of the present model to previous work on models

of globally coupled oscillators subject to common forcing. The existing literature has

focused almost exclusively on sinusoidal forcing [63, 46, 52, 15, 4], owing to the analytical

progress that this assumption allows. The two bodies of work most closely related to that

presented above are due to Ott-Antonsen [52] and Mirollo-Strogatz [46].

2.8.1 Ott-Antonsen Ansatz

One model of a population of coupled oscillators subject to common forcing was discussed

by Ott and Antonsen [52] as a possible application of the powerful dimension reduction

known as the Ott-Antonsen (OA) ansatz. It is therefore natural to suppose that the

system we consider here can be fully understood in that framework. However, while it is

the case that the OA ansatz can describe the fixed point that we consider, the dynamics

away from the fixed point do not leave the OA manifold invariant, precisely because the

sawtooth forcing function we consider is not sinusoidal. We now demonstrate this fact.

The OA ansatz concerns a probability density formulation of the mean-field Kuramoto

model in which the system is described by a probability density f(ω, θ, t) that gives the

probability that a randomly selected oscillator has natural frequency ω and phase θ at
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time t. The density f then evolves according to a Fokker-Planck equation,

∂tf(ω, θ, t) + ∂θ (v(ω, θ, t)f(ω, θ, t)) = 0 , (2.46)

where v(ω, θ, t) gives the velocity of an oscillator having natural frequency ω and phase θ

at time t (analogous to the right-hand side of (2.18)).

It is convenient to express f as a Fourier series in θ,

f(ω, θ, t) =
g(ω)

2π

(
1 +

∞∑
n=1

fn(ω, t) exp(inθ) + c.c.

)
, (2.47)

where c.c. denotes complex conjugate. The OA ansatz is the assumption that the Fourier

coefficients fn(ω, t) have the special form

fn(ω, t) = (α(ω, t))n , (2.48)

for some fixed, independent of n, function α. For example, α ≡ 0 describes a uniform

distribution over phase for every natural frequency, and |α| ↗ 1 gives f → δ(θ−ψ)g(ω)/2π

[52].

The truly remarkable result of [52] is that the dynamics, under the mean-field Ku-

ramoto model without external forcing, of a density f satisfying the OA ansatz can be

reduced to dynamics of only the function α. This is seen by inserting the Fourier series

for f into the dynamics (2.46), and separating terms by harmonics exp(inθ).

A straightforward calculation shows that the nth equation is

nαn−1∂α

∂t
+ inωαn +

K

2
nαn−1

(
rα2 − r∗

)
= 0. (2.49)

Every term contains a factor of nαn−1, and dividing it out leaves

∂α

∂t
+
K

2
(rα2 − r∗)− iωα = 0. (2.50)

This single equation gives dynamics for α directly; the set of densities described by

the OA ansatz is invariant under the dynamics of the Kuramoto model.

This result holds for the Kuramoto model without forcing, as well as the Kuramoto

model with sinusoidal forcing. The reason for this is that in writing the equation satisfied
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at an arbitrary harmonic exp(inθ), a sinusoidal forcing function introduces terms from

the exp(i(n− 1)θ) and exp(i(n+ 1)θ) harmonics, but no further.

Now, we can consider our forced model in the same way. The forcing term Λv(θ) =

−θ/π, θ ∈ [−π, π) appears in the Fokker-Planck equation as

∂f

∂t
+

∂

∂θ

{[
ω − θ

π
+
K

2i

(
reiθ − r∗e−iθ

)]
f

}
= 0. (2.51)

If we attempt the same procedure as before, inserting the ansatz (2.48) into (2.51),

the equation at the nth harmonic is (after dividing through by αn−1)

n
∂α

∂t
+ inωα +

(
−1

π
− inθ

π

)
α +

K

2
n
(
rα2 − r∗

)
= 0 , (2.52)

from which the n-dependence cannot be removed, precisely because of the −1/π term

that comes from the forcing function. In other words, there is no single equation for α

whose truth guarantees that (2.48) gives a solution to (2.51). Hence, we cannot conclude

that the set of distributions of the form (2.48) is invariant under the dynamics (2.51).

However, it does happen that the desynchronized fixed point, f(ω, θ, t) = δ(θ − πω),

fits the form (2.48), with α(ω, t) = exp(−iπω).

2.8.2 Mirollo-Strogatz random pinning model

Another system much more closely similar to ours is the “random pinning” model studied

by Mirollo and Strogatz [46]. The random pinning model consists of a system of N spins,

with each one pinned by an anonymous driving force to a particular (randomly chosen)

phase. In explicit terms, the dynamics are

ϕ̇i = sin(αi − ϕi) +
K

N

N∑
j=1

sin(ϕj − ϕi) , (2.53)

where {αi} are random quantities sampled from the uniform distribution on the unit

circle. The only difference between this equation and the one that we study is the term

ωi−ϕi/π is replaced by sin(αi−ϕi). It remains the case that in the absence of coupling,

each oscillator evolves according to an autonomous ODE on the unit circle with one stable

fixed point, and that the state in which each oscillator is at its individual fixed point has

R ≈ 0.
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The authors proceed to present a continuum formulation of the dynamics (2.53) that

is of the same form as (2.18); where we represent phase as a function of natural frequency,

they represent phase as a function of pinning phase α. Owing to the regularity of the sine

function, it is possible to obtain precise analytical results on the existence, number, and

stability of fixed points. Our formulation is not amenable to the same analysis, for the

reason that the sawtooth forcing function we consider has infinitely many Fourier modes.
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Chapter 3

Coarse-Graining for Coupled

Oscillators

Numerical simulations of complex multi-scale phenomena are fundamental to modern sci-

ence. We investigate the following question: given a simulation of a rhythmic dynamical

process, does there exist a good lower-dimensional representation? If so, finding such a

representation may enable accelerated computational simulation and provide fundamental

insight into the dynamics of interest. In this study, we infer coarse-grained equations of

motion that describe a heterogeneous population of oscillators with a modular coupling

structure. We choose this system because it is known to exhibit a transition from high-

to low-dimensional behavior, where the latter is well-described by equations of a known

form. We explore phase transitions in clustering and model selection through numeri-

cal simulations, and evaluate generalizations by systematically discarding several of the

simplifying assumptions involved.

3.1 Introduction

The Kuramoto model of coupled oscillators [42] has served since its introduction as a

simple model of collective behavior. Many generalizations have been proposed, one class

of which involves supposing that the oscillators are not coupled all-to-all or on a regular

lattice, but according to a network with a nontrivial structure. Many results have been

obtained that connect the coupling network’s structure with the oscillators’ dynamics,
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either in steady state or during the transient leading up to it [7, 30, 5, 22]. A particularly

intuitive and interesting class of results supports the notion that if the coupling network

exhibits a strongly modular structure (see e.g. [49] for a discussion of modularity), then

oscillators in the same community will tend to align with each other more readily than

with the rest of the network [7, 6, 5, 22, 30]. This property makes the Kuramoto model

an ideal example for investigating coarse-graining of nonlinear dynamics.

The study of the Kuramoto model on modular networks goes back at least to Lumer

and Huberman [45], who considered coupling according to a hierarchical lattice. They

found that depending on parameter settings, it is possible to observe a sequence of local

synchronization transitions that nonetheless may not result in global synchronization in

the infinite-size limit. Building on prior work of Daido in the setting of regular lattices [20],

their analysis proceeds by replacing successively larger and larger clusters of oscillators by

a single “imaginary giant cluster oscillator”, reminiscent of renormalization group analysis

[73]. A rigorous and thorough renormalization group analysis of Lumer and Huberman’s

model was recently performed by Garlaschelli and collaborators [28], and renormalization

for coupled oscillators on a 1-D lattice has been investigated by Kogan et. al. [39].

More recent connecting modular network structure with the dynamics of synchroniza-

tion is due to Oh et. al. [50], who studied the synchronization transition in a modified

Kuramoto model on various empirical and synthetic modular network topologies, finding

that the location and scaling properties of the transition depend on the manner in which

modules are linked.

Another line of work connecting oscillator dynamics to the structure of the networks

that couple them examines the case of identical oscillators [7, 6, 5, 22, 30]. In this case,

there is a single global attractor, corresponding to complete synchronization (provided the

coupling graph is connected). Rather than study this relatively uninteresting attractor,

one can instead consider the transient. By measuring the correlation (over an ensemble of

initial conditions) between all pairs of oscillators as a function of time, it is possible to track

the manner in which oscillators come to synchrony. The oscillators begin uncorrelated,

while in the end, all oscillators are synchronized and hence all perfectly correlated with
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each other; therefore, time serves as a natural resolution parameter for decomposing the

network into mutually-correlated groups.

Finally, the seminal work of Ott and Antonsen [52] demonstrates rigorously that a

group-structured population of oscillators can be represented (in the N →∞ limit) by a

closed ODE with one degree of freedom per group. This framework has been leveraged

by Skardal and Restrepo [65] to study in detail the phenomena of synchronization within

and between modules, finding several interesting bifurcations.

In this paper, we informally define coarse-graining as as the reduction of a detailed

(micro-scale) dynamical system model to a lower-dimensional system that reproduces

the overall (macro-scale) behavior of the original. We define explicit procedures for the

inference of a set of mappings that provide a formal correspondence between each coarse-

grained variable and a subset of detailed variables whose collective dynamics it is used

to represent. Conceptually, this is similar to the aim of renormalization group methods

in statistical physics [73]. Here, we seek a theoretically and computationally verifiable

approach for dimensional reduction of Kuramoto oscillators with modular coupling to the

natural coarse dynamical representation.

3.2 Background

The Kuramoto model is the ordinary differential equation (ODE) system

θ̇i = ωi +
N∑
j=1

Kij sin(θj − θi), i = 1 . . . N, (3.1)

where θi ∈ S1 is the phase of the ith oscillator, ωi ∈ R is its natural frequency, N is

the total number of oscillators, and Kij ∈ R≥0 is the coupling matrix that defines which

oscillators influence each other.

We can equivalently formulate the Kuramoto model in terms of complex phases yi =
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exp(iθi). By the chain rule, we have

ẏi = iyiθ̇i

= iyi

(
ωi +

N∑
j=1

Kij sin(θj − θi)

)

= iyi

(
ωi +

N∑
j=1

Kij
1

2i

(
ei(θj−θi) − e−i(θj−θi)

))

= iyi

(
ωi +

N∑
j=1

Kij
1

2i

(
yjy
∗
i − y∗j yi

))

= iωiyi +
1

2

N∑
j=1

Kij(yj − y∗j y2
i ) (3.2)

where we have used the fact that y∗i yi = 1.

Perhaps the best-studied case of the Kuramoto model is that of mean-field coupling,

where Kij = K/N for all i, j. In this case it is well known that in the limit N → ∞,

the system (3.1) exhibits a phase transition with respect to K: there exists Kc such that

for K < Kc, the oscillators behave mostly independently, while for K > Kc a subset of

oscillators spontaneously lock to a single frequency.

Synchronization in the Kuramoto model is typically quantified by the order parameter,

z :=
1

N

N∑
j=1

eiθj = ReiΘ, (3.3)

where R ∈ [0, 1] is the synchrony and Θ ∈ [0, 2π) is the average phase. If all phases are

equal then R = 1, and if the phases are spread evenly over the unit circle, then R ≈ 0.

Thus R is a natural measure of synchronization.

The dynamics of z depend on the dynamics of all θi, but it is natural to suppose that

in some limit there exists a closed equation for the dynamics of z. Indeed there is, as

demonstrated by Ott and Antonsen [52]. Assuming that wi are Cauchy, distributed, i.e.,

ωi ∼ g(ω) where g is the Cauchy probability density function with mode 0 and width 1,

and that the coupling is mean-field, then the evolution of z is described in terms of R and
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Θ as

dR

dt
+

(
1− K

2

)
R +

K

2
R3 = 0, (3.4)

dΘ

dt
= 0. (3.5)

The form (3.4) shows clearly that R = 0 is always a solution, but undergoes a pitchfork

bifurcation at Kc = 2, when a new solution R =
√

1− 2/K appears, representing partial

synchrony that becomes global synchrony (i.e. R→ 1) as K →∞.

Interestingly, the same analysis carries over to the case where oscillators are not cou-

pled all-to-all, but are divided into subsets such that the strength of coupling between

any two oscillators depends on the subsets to which they belong. Following [65, 10], we

represent such a modular system as

θ̇σi = ωσi +
C∑

σ′=1

Nσ

N

Kσσ′

Nσ′

Nσ′∑
j=1

sin(θσ
′

j − θσi ) (3.6)

where module σ (of C total) is of size Nσ, and N =
∑

σNσ denotes the total number of

oscillators. If oscillators in the same module are coupled much more strongly than those

in different modules, we may expect that modules synchronize internally and the system

is describable at a larger scale. Generalizing from the mean-field case, we suppose that

the appropriate collective variables are the cluster order parameters {zσ}, defined by

zσ =
1

Nσ

Nσ∑
i=1

eiθσi . (3.7)

If {ωσi } are distributed according to a Cauchy distribution with mode Ωσ and width

δσ, then the Ott-Antonsen ansatz predicts that the cluster order parameters will obey the

system of C complex ODEs

żσ = i(Ωσ + iδσ)zσ +
1

2

C∑
σ′=1

Nσ′

N
Kσσ′ (

zσ′ − z∗σ′z2
σ

)
(3.8)

which is mathematically of the same form as the original Kuramoto model written in

terms of complex phases (3.2). The consequences of this equation for the existence of

mesoscale synchronization were discussed in detail in [65]. For now, we note that (3.8)
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reduces exactly to the Kuramoto model in the case that δσ = 0 and |zσ| = 1 for all

σ. In this sense, this natural emergence of (3.8) implies that, in the Kuramoto model,

groups of oscillators can behave collectively as a single oscillator. In other words, there is

a renormalization procedure for coupled oscillator systems that remains within the same

model class (in particular, the one defined by (3.8)).

Here we take a complementary approach, and develop a process to infer the parameters

of the equation (3.8) given time-series measurements of the system (3.6), so that the

resulting system of form (3.8) can accurately reproduce the dynamics of the cluster order

parameters of (3.6).

The question of existence of a good coarse-grained model is nuanced, so we now unpack

it into two related, but distinct, questions.

The first question is, does the value of z ∈ CC exactly determine the value of ż? And

if so, what is the functional relationship ż = f(z)? One straightforward way to address

this question is to attempt to fit a function to the data {(z(t), ż(t)|t ∈ [0, T ]}. In general

this is an infinite-dimensional optimization problem, but can be restricted to a finite-

dimensional problem by choosing a finite set of basis functions. If we succeed in finding

f such that ‖ż − f(z)‖ is small, then we conclude that the dynamics of z (i.e. ż) can be

accurately computed from only the value of z.

Assuming that answering the first question gives us a functional relationship ż = f(z),

the next question is: how well is it possible to predict the future of z based on its present

value? This question is much harder to answer in general, because even if the dynamics of

z are perfectly deterministic, they may be highly sensitive to initial conditions and hence

practically impossible to forecast beyond a short time. We therefore make a distinction

between training error, the quality of the fit ‖ż − f(z)‖, and prediction error, ‖z − ẑ‖

where dẑ/dt = f(ẑ) and ẑ(t0) = z(t0). Because prediction error is much harder to bound

in general, we focus first on the training error as an indicator of the existence of a coarse-

grained model.

Finally, notice that we have implicitly assumed so far that the oscillators are parti-

tioned by the coupling network, and that this partition is the appropriate one to consider
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when seeking a coarse-grained model. That is, each oscillator is identified by two indices,

σ giving its cluster and i giving its position within the cluster. However, we may want to

relax this assumption and allow the data to tell us how to partition the oscillators. To

this end we introduce some notation.

Let {θi|i = 1, . . . , N} be a collection of phases that evolve in time according to (3.1),

and let P = (P1, . . . , PC) be a partition of {1, . . . , N}. Formally,

C⋃
σ=1

Pσ = {1, . . . , N} and Pσ ∩ Pσ′ = ∅ ∀σ 6= σ′. (3.9)

In words, P is a set of subsets of nodes that are mutually disjoint and cover the whole

network. We can then define the coarse-grained variables according to this partition by

zσ =
1

|Pσ|
∑
i∈Pσ

eiθi (3.10)

or, using angle brackets as shorthand for averaging, zσ = 〈exp(iθi)〉i∈Pσ .

Note that we can recover (3.6) by setting

Pσ =

{
i ∈ {1, . . . , N}

∣∣∣∣∑
σ′<σ

Nσ′ < i ≤ N −
∑
σ′>σ

Nσ′

}
(3.11)

and

Kij =
Nσ

N

Kσσ′

Nσ′
∀i ∈ Pσ, j ∈ Pσ′ (3.12)

3.3 Inference of Modular Parameters

We now describe a procedure for inferring the parameters of the coarse-grained model

(3.8) assuming that the modular structure of (3.6) is known. Given a solution {θσi (t)} of

the system (3.6), we can obtain a coarse-grained time series {zσ(t)} according to (3.7).

If these coarse-grained variables evolve according to (3.8), then it should be possible to

recover the effective natural frequencies and coupling parameters using a least-squares fit.

Observe first that the right-hand side of (3.8) is a linear combination of terms that can

be measured directly from data. To clarify this, we re-write (3.8) as

żσ = ω̃σzσ +
C∑

σ′=1

Bσσ′
(
zσ′ − z∗σ′z2

σ

)
, (3.13)
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where ω̃σ = i(Ωσ + iδσ) and Bσσ′ = Nσ′Kσσ′
/2N .

Let zσ = (zσ(t1), . . . , zσ(tn))T and żσ = (żσ(t1), . . . , żσ(tn))T denote the time-series

of observations of the coarse-grained variable zσ and its derivative, respectively. Then

the parameters pσ = (ω̃σ, Bσ1, . . . , BσC)T can be inferred by solving the linear system

żσ = Gσpσ, where the n×C + 1 matrix Gσ contains the values of the terms of which the

entries of pσ are coefficients. Explicitly, we can write Gσ as

Gσ =
[
zσ z1 − z∗1z

2
σ . . . zC − z∗Cz

2
σ

]
(3.14)

where complex conjugate, product, and squaring of the vectors zσ are understood to be

taken element-wise.

Many more time-series observations are required than the number of modules in the

model (n� C), so the linear system żσ = Gσpσ will be overdetermined. Minimizing the

squared residual of this system for each σ = 1, . . . , C gives a complete set of parameters

for the ODE (3.13). Given those parameters, we can compute the training fit ‖ż− f(z)‖,

where f is the right-hand side of (3.13).

We can further compute a prediction error. Assuming we have access to the true

trajectory for t > tn (if, say, we only use part of the trajectory for training), then we can

use that true trajectory as a basis for comparison. To generate a prediction, we simply

integrate the ODE dẑ/dt = f(ẑ), where again f is the right-hand side of (3.13) with

inferred parameter values, with the initial condition ẑ(0) = z(tn). The overall procedure

– coarse-graining, inference, and prediction – is illustrated in Figure 3.1. Based on the

results of [52, 65], we expect to see a good fit if N (the number of oscillators) is very large

and the coupling is as described in (3.6). We wish to understand the suitability of (3.13)

as a coarse-grained model for finite N .

3.4 Numerical Experiments

To make the situation concrete, we now present results of numerical experiments on a

system of N = 15 oscillators, organized into three modules of five nodes each. For each

oscillator we sample a natural frequency from a standard normal distribution (i.i.d.), and

fix them through all experiments. The coupling between nodes is such that each pair of
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Figure 3.1. Schematic depicting the inference and validation procedure described in
the text. At top left are the time series of each of fifteen oscillators, color coded by
which of the three modules they belong to. At top right, we see the time series of the
corresponding cluster order parameters. The time series of cluster order parameters
are then used to construct a least-squares problem (bottom left) whose solution gives
a set of parameters defining an instance of (3.13). Finally, we can use the inferred
ODE to predict the future evolution of the cluster order parameters for t > Ttrain.

nodes in the same module is coupled with strength Kij = Kin/N and pairs of nodes in

different modules are coupled with strength Kij = Kout/N . We then examine the behavior

of the system for Kin ∈ [0, 10] and Kout ∈ [0, 2.5].

First, we can check whether or not the modules are internally synchronized. To do

this we compute the cluster order parameters zσ according to (3.7), and compute its

magnitude, averaged over time after an initial relaxation period. We also compute the
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Figure 3.2. An overview of the behavior of the fifteen-oscillator system described in
the text as a function of coupling parameters (Kin,Kout). Top row: magnitude of
the order parameter within each module. Bottom left: magnitude of the global order
parameter. Bottom right: natural logarithm of the training error, i.e. the difference
between the observed value of ż and the inferred right-hand side.

time-averaged magnitude of the global order parameter (3.3)in the same way. Unsurpris-

ingly, we find that if Kin and Kout are both large enough, the whole system is synchro-

nized, as indicated by a large value of the global order parameter. More interestingly,

we also find that for some values of (Kin, Kout), each module is internally synchronized,

while the system as a whole is not. Finally there are other cases where not all modules

are internally synchronized, including the low-coupling regime where the oscillators move

essentially independently. The situation is summarized in Figure 3.2.

It is reasonable to suppose that if each module is internally synchronized, then there

should be a good model of the dynamics at the level of one (complex) degree of freedom

per module. To test this hypothesis, we take the time series {θi(t)|i = 1, . . . , 15} and

coarse-grain them according to the structural partition of the network,

P = {(1, . . . , 5), (6, . . . , 10), (11, . . . , 15)},
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Figure 3.3. Heatmaps showing the relationship between local phase-locking and train-
ing fit of a coarse-grained model. Left: diagram in the (Kin,Kout) plane of which
modules are internally phase-locked. Right: natural logarithm of the training error,
i.e. the difference between the observed value of ż and the inferred right-hand side.

obtaining the coarse-grained time series {zσ(t)|σ = 1, 2, 3}. From these coarse-grained

time series we compute a centered-difference approximation of the derivative, żσ(t) =

(zσ(t + ∆t) − zσ(t − ∆t))/2∆t. We then perform the fitting procedure described above

to find parameters ω̃σ, Bσσ′ that most nearly satisfy the equation (3.13). The residual (in

logarithm) is displayed in the bottom right of Figure 3.2 as a function of (Kin, Kout), and

repeated at the right of Figure 3.3.

Interestingly, the heatmap of training error as a function of (Kin, Kout) reveals a strong

separation of parameter space into distinct regions. Notably, the separation of parameter

space appears much more discrete in terms of training error than in terms of the magnitude

of the order parameters. This discrepancy suggests that the critical condition determining

the quality of fit is discrete in nature; for instance, whether or not the modules are

internally phase-locked. Formally, we use the notion of phase cohesiveness, following [24].

Let the set Arcn(γ) ⊆ Tn be defined as the closed set of angle arrays (θ1, . . . , θn) such that

all θi are contained within an arc of angle γ. Given a partition P , we say that the set of

phases (θi(t))i∈Pσ in module σ is phase cohesive if it is in Arc|Pσ |(γ) for some γ < 2π, for

all t (possibly after discarding an initial transient). The left panel of Figure 3.3 shows,

as a function of (Kin, Kout), which modules are phase cohesive and whether the whole

system is phase cohesive, with angle γ = π.

43



40 35 30 25 20 15 10 5
log(training error)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

P(
er

ro
r)

training error in terms of phase cohesiveness
no phase-cohesiveness
module 2
modules 2 & 3
modules 1, 2 & 3
whole system

Figure 3.4. Histogram of training errors, coded by which modules are phase cohesive.
For each of the 50 × 50 numerical experiments, we determine whether or not each of
the three modules is phase cohesive with angle π. We observe five different cases: i)
none of the modules is phase cohesive, ii) module 2 is phase cohesive, iii) modules 2
and 3 are phase cohesive, iv) modules 1, 2, and 3 are all phase cohesive, and v) the
whole system is phase cohesive. The distribution of training errors for each of these
five cases is shown here in a different color.

First, we see that it is exactly the cases when the whole system is phase cohesive that

training error is especially small, on the order of exp(−35). Conversely, we find a poor

fit (large training error, on the order exp(−1)) for cases where none of the modules is

not phase cohesive. Finally, we observe quite a good fit for cases where each of the three

modules is phase cohesive, and a slightly poorer fit for cases where modules two and three

are phase cohesive while module one is not. A detailed breakdown is given in Figure 3.4,

where we visualize the distribution of training error as a function of which modules are

phase cohesive. This observation suggests that phase cohesiveness is the critical condition

that determines whether or not a given partition of oscillators supports a coarse-grained

model.
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3.5 Finding a good partition

Next we describe a method to use phase cohesiveness to find a partition of the nodes of an

oscillator network such that the corresponding coarse-grained variables evolve according

to an equation of the form (3.8).

Given a trajectory {θi(t)} of the ODE (3.1), let P dyn = (P1, . . . , PC) be the coarsest

partition such that (θi(t))i∈Pσ are phase cohesive for all σ and all t (possibly after removing

an initial transient). Then, given P dyn, we coarse-grain according to (3.10) to obtain the

coarse-grained trajectory {zσ(t)}.

In practice, it is prohibitively expensive to enumerate all partitions of N nodes to find

P dyn that satisfies the condition described above, so we use a heuristic. Notice that if

two oscillators are in the same phase cohesive cluster, then their average frequency will

be nearly equal over a long time. So given a trajectory {θi(t)}, we compute a long-term

average frequency ωi = (θi(t0 + T )− θi(t0))/T , and cluster nodes initially by their value

of ω. We can then check if the resulting clusters are in fact phase cohesive, and if they

are not, perform a finer clustering according to ω and repeat until we have phase cohesive

clusters.

For each of the 50× 50 numerical experiments on the fifteen-node system, we perform

the dynamical clustering procedure described above, coarse-grain the system according to

the resulting partition, and seek an ODE model of the form (3.13) to describe the dynamics

of the coarse-grained variables. A comparison of the training error obtained using the

dynamical partition to that using the structural partition is presented in Figure 3.5. For

the structural partition, we have already noted that there are many cases where there is no

good ODE describing the coarse-grained variables, hence a tall peak at the far right. This

peak is eliminated when we use dynamical partitioning, indicating that we can always

find a moderately well-fitting coarse grained model if we allow the partition to adapt to

the data.

To further investigate the strengths and limitations of coarse-graining according to a

dynamically determined partition, we can break down the cases in terms of properties of

the partition. Our primary conclusion is that the worst-fitting cases are those in which
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Figure 3.5. Comparison of training error for the coarse-grained model obtained by
coarse graining according to the structural partition (three modules of five nodes each,
orange) to the dynamical partition (variable number of modules, found as the coarsest
possible partitioning into phase cohesive groups, blue).

the system splits into two clusters, one of which is a singleton. The situation is shown in

Figure 3.6.

To see in detail what about such a case makes a coarse model not fit correctly, we select

the case with the worst performance of all, which corresponds to parameters Kin = 6.73,

Kout = 0.92. In this case we find that the system decomposes into two clusters, one

containing a single oscillator. To visualize the actual performance of the fitting procedure,

we plot the actual time derivative of each coarse-grained variable alongside the inferred

right-hand side f(z). The result is shown in Figure 3.7. We can intuitively understand

the failure of this fit as follows. The values of Kin and Kout clearly indicate that every

oscillator is much more strongly affected by other oscillators in its own module than by

oscillators in different modules. Hence we know that the singleton oscillator is much more

strongly affected by four of the fourteen phase cohesive oscillators than by the remaining

ten. This means that its dynamics may be affected by the other group in ways that are

not appropriately summarized by the simple average of their phases.

In other words, the coarse-grained model may fail to work because the coupling be-
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Figure 3.6. Training fit for a coarse-grained model obtained according to the phase
cohesive partition, coded by properties of the partition. In blue are cases where the
system decomposes into two clusters, one of which contains only a single node. We see
clearly that these cases comprise the most extreme errors.

tween oscillators may not directly determined by their cluster membership. To see if this

is actually the case, we consider the ensemble of dynamics-based partitions in a different

way. For each partition obtained by imposing phase cohesiveness, we determine whether

or not it is a refinement of the structural partition {(1, . . . , 5), (6, . . . , 10), (11, . . . , 15)};

that is, whether or not each phase cohesive cluster is a subset of one of the structural

modules. Breaking the cases down in this way gives us Figure 3.8.

Finally, we consider the worst case scenario among the cases where the dynamical

partition refines the structural partition. That case is the one where Kin = 5.92 and

Kout = 0.26, and the system decomposes into five modules. The actual and fitted right-

hand sides are shown in Figure 3.9. Notice the fit is much better than in Figure 3.7.
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Figure 3.7. Visualization of training fit in the worst case observed in the 50 × 50
numerical experiments on the fifteen-node network. In this case one cluster consists
of a single oscillator. In orange is the time derivative of the coarse-grained variable
corresponding to the singleton cluster, and in blue is the time derivative of the coarse-
grained variable corresponding to the 14-node cluster. Solid lines are ground truth,
and dashed lines are the inferred right-hand side evaluated on the coarse-grained time
series. The large difference in the sizes of the clusters induces a separation of scales in
the derivative, which we can clearly see.
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Figure 3.8. Histogram of training errors for the coarse-grained model corresponding to
the dynamics-based partition, coded by whether or not the resulting partition refines
the structural one. Notice that the maximum error in the case that the dynamical
partition refines the structural one is far below the overall maximum.

3.6 Prediction

Here we evaluate the coarse-grained ODEs obtained as described above in terms of their

ability to predict future evolution of the true system. As mentioned earlier, the problem

of prediction is nontrivial even if we do know the exact dynamics that govern a system,

because those dynamics may be highly sensitive to initial conditions. This issue is only

amplified if the degrees of freedom evolve only approximately according to the inferred

dynamics.

Give a trajectory {θi(t)} for t ∈ [0, Tf ] of the fine-grained system (3.6), and a partition

P of the nodes, we can apply (3.10) to obtain the coarse-grained trajectory {zσ(t)} for each

module σ. We then use the least-squares fit described in Section 3.3 to infer parameters

{ωσ}, {Bσσ′} based on an initial portion of the coarse-grained trajectory, {zσ(t)} for

t ∈ [0, Ttrain]. Using the inferred parameters and the initial condition {zσ(Ttrain)}, we

integrate (3.8) to obtain a predicted trajectory {ẑσ(t)} for t ∈ [Ttrain, Tf ]. We can then

compare the predicted trajectory {ẑσ(t)} with the coarse-grained trajectory {zσ(t)} for

t ∈ [Ttrain, Tf ], as shown in Figure 3.10.
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Figure 3.9. The worst case scenario for fitting a coarse-grained right-hand side in the
case where the phase cohesive partition is a refinement of the structural partition.

3.7 Discussion

In this study, we present numerical experiments that support the widely-held intuition

that the process of modular synchronization in the Kuramoto system exhibits similarities

to the renormalization procedure in statistical physics. In particular, we have demon-

strated that in a modularly synchronized Kuramoto oscillator system, groups of mutually

synchronized oscillators may be treated each as meta-oscillators, thereby yielding dynam-

ics that belong to a family that strictly generalizes the Kuramoto model.

As shown in Figure 3.3, even the presence of a strongly modular structure in the cou-

pling network does not guarantee that the actual meso-scale synchronization will follow

the same divisions. In contrast, the identities of the mutually synchronized clusters de-
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Figure 3.10. Example of the validation procedure described in the text. Blue curves
are trajectories of the three cluster order parameters in a 15-node network consisting
of three modules of five nodes each. Parameters of equation 3.8 were inferred from
these data for t ∈ [0, Ttrain] = [0, 300] and the resulting equations were integrated for
t ∈ [Ttrain, Tf ] = [300, 1000] (red curves). Note nearly-exact overlap.

pends jointly on the coupling structure and the natural frequencies, in a way that can be

understood through the procedure outlined in 3.5. This level of detail is easily glossed over

in mean-field type treatments. The method that we employ can be extended to study the

emergence of increasingly complex collective behavior in networks of interacting rhythmic

dynamical systems. For instance, our approach can be used to elucidate the interplay of

dynamical heterogeneity (i.e., distinct natural frequencies) and the coupling structure of

a complex oscillator network.

3.8 Future Work

We now discuss several directions in which this work could be deepened and extended
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3.8.1 Closure methods

It is possible to write exact evolution equations for the coarse-variables if you allow explicit

time-dependence through the residuals xi(t) = zσ(t)− exp(iθi(t)). Explicitly, we have

żσ = Aσ +Bσzσ +Dσz
2
σ+

+
C∑

σ′=1

[
Eσσ′(zσ′ − z∗σ′z2

σ) + Fσσ′z∗σ′ +Gσσ′zσz
∗
σ′

]
. (3.15)

The terms highlighted in blue are those that are present in the original OA equations.

The functional form of the coefficients is given by

Aσ =

〈
iωixi +

C∑
σ′=1

∑
j∈Pσ′

Kij(xj − x∗jx2
i )

〉
i∈Pσ

(3.16)

Bσ =

〈
iωi +

C∑
σ′=1

∑
j∈Pσ′

Kij(−2x∗jxi)

〉
i∈Pσ

(3.17)

Dσ =

〈
C∑

σ′=1

∑
j∈Pσ′

Kij(−x∗j)

〉
i∈Pσ

(3.18)

Eσσ′ =

〈∑
j∈Pσ′

Kij

〉
i∈Pσ

(3.19)

Fσσ′ =

〈∑
j∈Pσ′

Kij(−x2
i )

〉
i∈Pσ

(3.20)

Gσσ′ =

〈∑
j∈Pσ′

Kij(−2xi)

〉
i∈Pσ

(3.21)

where

〈ai〉i∈Pσ :=
1

|Pσ|
∑
i∈Pσ

ai. (3.22)

If one could obtain an accurate expression for xi in terms of microscopic parameters

ωi, Kij, and the coarse variables zσ, then the explicit time-dependence could be removed,

leaving an autonomous ODE for the coarse variables {zσ}. A promising approach could

be to build on the work of Gottwald concerning collective coordinates [32], in which the

basic idea is that within a phase-locked cluster of oscillators, the residual phase of an

oscillator is directly proportional to it natural frequency relative to the cluster average
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frequency. The associated constant of proportionality serves as a “collective coordinate”,

allowing an expression involving all phase variables to be expressed in terms of the cluster

average phase and the collective coordinate.

Another possible way to remove the explicit time-dependence is essentially take a more

data-driven approach to the above procedure. The time-dependence of the coefficients

(A)–(G) in the ODE governing the coarse variables can be computed directly from the

fine-grained time series, so one could conceivably infer a functional relationship between

those coefficients and the coarse-grained variables using a method analogous to the one

we used to infer a functional relationship between ż and z. If such a function fit is

successful, its substitution into the (3.15) would render that ODE autonomous, albeit

with potentially more intricate dependence on zσ than in just the terms that are written

in (3.15) directly.

3.8.2 Data-driven function discovery

Stripping away yet another layer of theory, we can remain largely agnostic about the

functional form of the equations that should govern ż and infer them using a procedure

such as SINDy [13]. Given the enormous complexity of the space of functions f : CC →

CC , it is prudent to impose certain restrictions on the function dictionary we choose.

First, the OA ansatz and its associated dimension reduction shows that the reduced

model exhibits on-site and pairwise terms, and no higher-order (i.e. three-or-more-

particle) terms. Moreover, each coupling term is of the same form. Therefore it is rea-

sonable to suppose that our function basis should contain a set of onsite terms and a

set of coupling terms, and that these terms should be replicated for each node and edge,

respectively.

Next, it is well known that coarse-graining of dynamics can induce memory effects

[80], so it is reasonable to expect that a coarse-grained model including memory or nonlo-

cality (in the form of polyadic coupling terms) would be effective. Data-driven discovery

of coarse-grained dynamical models including memory is discussed in [56]. Polyadic cou-

pling terms make no conceptual difference, but combinatorial explosion may make their

inclusion computationally costly.
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Finally we remark on some physical principles that inform our methods for inferring

coarse-grained dynamical models. Notice that in (3.8), the coefficient of the linear term

has negative real part (since δσ ≥ 0 is the width of a Cauchy distribution, and so cannot

be negative), and the coupling matrix NσK
σσ′
/2N is real. These conditions together

imply that the C-fold product of the unit disk is invariant; in other words, if all complex

phases zσ initially have magnitude not greater than 1, then they will continue to have

magnitude not greater than 1 for all time. This condition breaks down if we allow the

coupling matrix to have an imaginary part or the coefficient of the linear term to have

positive real part, and so we impose those constraints during our inference procedure.

Those constraints can be thought of in a more general context. We know that the

coarse-grained variables zσ should always remain bounded in the unit disk, because they

are averages of quantities on the unit circle. Knowing this, we can perform constrained

inference of the right-hand side of an ODE governing those variables, with the constraint

being that a function is feasible only if the corresponding ODE leaves the appropriate set

in state space invariant.

Such a constraint may appear unruly. Notice, however, that we only need to impose

that the vector field never points outward at the boundary. If we alternately write the

system in terms of amplitudes and phases, that condition is simply ṙσ ≤ 0 whenever

rσ = 1 and rσ′ ≤ 1 for all σ′. Moreover, this constraint is convex! That means that if we

construct a basis of functions f1, . . . , fL that all obey the disk-invariance condition, then

any convex combination of those basis functions will obey it as well. Given such a basis,

we can fit ż = a1f1(z) + · · · + aLfL(z) with ai ≥ 0, and rest assured that the resulting

right-hand side will obey the constraint that the coarse variables z remain bounded in the

appropriate way.
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Chapter 4

Cascading Extinction Events in

Mutualistic Ecosystems

This chapter comprises work done in close collaboration with Weiran Cai and Raissa

D’Souza.

4.1 Introduction

A large class of systems exhibiting collective behavior includes those consisting of many

similar individuals whose pairwise interactions form the edges of a complex network.

Examples from the engineered world include the worldwide web [3], critical infrastructure

systems (electricity, water, natural gas) [40, 25], transportation networks (road, air, sea),

supply chains [38], and organizational hierarchies (government, business) [59]. In the

natural world, waterways form physical networks that connect the physical landscape in

new and nontrivial ways [69]; chemical species are linked by relations of reactant and

product [19]; living things depend on biophysical networks to transport materials critical

to life (mycelia, trees, vasculature) [72]; many organisms arrange themselves in myriad

social structures [58]; and finally the many species that exist in any given environment

interact with one another [33].

It is this last example that we take as our inspiration for the present line of work.

Specifically, we mention mutualistic ecosystems. A mutualistic ecosystem is one in which

multiple types of species interact in a mutually beneficial manner (for example, plants
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and the animals that pollinate them). The data of which species exist and which pairwise

relations they hold can be called a mutualistic network. Note that mutualism is not strictly

constrained to ecological contexts; mutualistic networks have been identified in socio-

technical contexts as well, and have been observed to share certain structural similarities

with their ecological counterparts [61]. The two structural features that have been most

prominently observed in mutualistic networks are nestedness [8, 11] and modularity [49,

51]. In short, nestedness is the tendency for the neighbors of a given node to be a subset

of the set of neighbors of any higher-degree node, and modularity is the property that

the network can be divided into modules such that most of the links are between nodes

in the same module as each other.

One can ask any number of questions about a mutualistic ecosystem and how its

operation can be understood by measuring its network architecture. We focus especially

on the phenomenon of cascading extinction events. By cascading, we mean that one

extinction event may precipitate others, and so on, possibly leading to the collapse of the

entire ecosystem.

Our central aim is to understand the effect of nestedness (as manifested by degree het-

erogeneity) and modularity on the behavior of cascades of extinction events on networks.

In what follows, we will formulate a mathematical model that captures certain qualitative

features of this phenomenon and analyze its behavior.

4.2 Technical survey

There are many levels at which to model species extinction. A common choice is to write

a stochastic differential equation (SDE) that governs the abundance (say, biomass in kg)

of each species as a function of time. In this framework it is possible to model species

extinction either as a function of an initial set of extinct species, or as a function of

changing environmental conditions, and to observe that extinction events are preceded by

generic signals that indicate proximity to a tipping point [21].

One can also model an ecosystem at a more coarse level, assigning to each species

a binary variable whether that species is present or absent. While this is a significant
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simplification, the system still supports rich phenomenology. One interesting line of work

in this direction has been developed by Colin Campbell and coauthors [14], who model

the formation of mutualistic networks and study their sensitivity to species removal.

4.3 Dynamics

For our context, we choose to use a version of the threshold model introduced by Watts

[71] to study diffusion of information through a social network. In Watts’ original work,

the system is comprised of N individuals connected by a network with (unweighted and

undirected) adjacency matrix A = Aij ∈ {0, 1}. Each node i is assigned a state ui(t) ∈

{0, 1} that evolves in discrete time t ∈ N; the state 0 is called “inactive” while the state

1 is called “active”. In the context of information diffusion, an active node knows some

piece of information and an inactive node does not. Some proportion of nodes are selected

at random to be active at time t = 0 while all the others remain inactive. The state of

each node then updates in time according to the rule

ui(t+ 1) =

1
∑

j Aijuj(t) > θki and ui(t) = 1

0 else

(4.1)

where ki =
∑

j Aij is the degree of node i and θ ∈ [0, 1] is the threshold.

In the language of information diffusion, an actor learns a piece of information if it is

known by at least some fraction of its neighbors, and no actor ever forgets that piece of

information. In the language of population dynamics, an inactive species is present, and

an active species is extinct; a species becomes extinct (active) if at least some fraction

of its neighbor (i.e. mutualistic partner) species is extinct (active). It may be initially

confusing that the “active” state corresponds to extinction; the reason for that choice is

that extinction is the absorbing state (i.e. a species cannot come back from extinction in

our model).

4.3.1 Deriving linear threshold dynamics from population ODEs

Here we show a calculation, starting from Lotka-Volterra equations for population dynam-

ics, that motivate the binary-state dynamics described above as a faithful approximation

of extinction behavior.

57



To begin, we follow [21] and others and suppose that the abundances of animal species

{Ak} and of plant species {Pi} evolve in time as

dPi
dt

= Pi

(
αPi −

NP∑
j=1

βPijPj +

∑NA
k=1 γ

P
ikAk

1 + h
∑NA

k=1 γ
P
ikAk

)
dAk
dt

= Ak

(
αAk −

NA∑
l=1

βAklAl +

∑NP
i=1 γ

A
kiPi

1 + h
∑NP

i=1 γ
A
kiPi

) (4.2)

where α represents a species’ intrinsic rate of growth (possibly negative), β are matrices

describing competition among plants and animals, γ are matrices describing the mutu-

ally beneficial relations between plants and animals, and h is a parameter known as the

handling time that controls the saturation of the mutualistic term.

We assume uniform growth rate (αPi ≡ αAk ≡ 0) and uniform competition (βGij ≡ 1/NG,

G ∈ {A,P}, and βPii = βAkk = 1). We assume further that mutualistic strength is inversely

proportional to node degree, which we write as γAki = γ0Mki/k
A
k , γPik = γ0Mik/k

P
i , where

M ∈ {0, 1}NA×NP is the bipartite adjacency matrix of the mutualistic network, so that

Mki = 1 if animal k and plant i interact, and zero otherwise. The degree is then defined

as kAk =
∑

jMkj and kPi =
∑

lMli, for animals and plants respectively.

Under these assumptions, the equations simplify to

dPi
dt

= Pi

α− Pi − β

NP

NP∑
j=1

Pj +

γ0
kPi

∑NA
k=1AikAk

1 + h γ0
kPi

∑NA
k=1AikAk


dAk
dt

= Ak

α− Ak − β

NA

NA∑
l=1

Al +

γ0
kAk

∑NP
i=1AkiPi

1 + h γ0
kAk

∑NP
i=1 AkiPi

 (4.3)

Now, consider a focal animal species k, and consider the case that Al = A for all l 6= k,

and Pi = P for some i and Pi = 0 for the rest. How many partners of animal species k

must remain alive in order for it to persist? In other words, we seek conditions such that

there exists a positive equilibrium value of Ak. Letting x = γ0Pmk/k
A
k , with mk denoting

the number of partners of animal species k that are still alive, we find that animal species

k can survive if

x >
βA− α

1 + αh− βhA
(4.4)
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or equivalently if
mk

kAk
>

1

γ0P

βA− α
1 + αh− βhA

(4.5)

which is just a fractional threshold condition, provided 1 + αh− βhA > 0.

Mathematically, this calculation works because of our assumption, made in previous

work [21, 62], that the benefit any given species receives due to a mutualistic interaction

is inversely proportional to the number of mutualistic partners (neighbors) that species

has. Logically, this same reasoning applied to the discrete setting leads to the fractional

threshold model that we now study.

4.3.2 Analytical approximation of cascade dynamics

We now return to the discrete linear threshold model introduced by Watts [71] and defined

in (4.1). The basic sort of question we consider about this model is: given an assortment

of initially-activated “seed” nodes, and properties of the network, what can we predict

about the size or likelihood of a large cascade of activation?

Watts’ analysis proceeds by considering the size of the largest “vulnerable cluster” of

nodes. A node is considered vulnerable if it can be activated by a single active neighbor.

Clearly, then, a connected set of vulnerable nodes can be all activated by only a single

activation of any one of them (or of any neighbor of a node in the connected vulnerable

cluster), so the size of the vulnerable cluster is strongly informative of the expected size

of a cascade of activation.

A thorough and rigorous analysis by Gleeson [29] established a general method for

studying dynamics with the “permanently active property” (PAP) on networks with ar-

bitrary degree distributions and either modularity or degree correlations, which we now

summarize. The assumptions required for this method to work are that the dynamics

should be binary-state (i.e. a node is either active or inactive) and irreversible (i.e. a

node that has become active cannot become inactive), and the network on which the

dynamics take place should be well-described by a partition {C1, . . . , CM} of the nodes

{1, . . . , N} into modules, a degree distribution p
(i)
k for each module, and a mixing matrix

e ∈ RM×M , defined such that ers is the fraction of links that connect module r to module

s.
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Assuming further that the network can be modeled as locally tree-like, and that the

number of initially active nodes is small, we can write a recursion relation governing the

quantities q
(i)
n , defined as the probability that a node in module i and tree level n is active,

conditional on its parent (at level n+1) being inactive. With ρ
(i)
0 representing the fraction

of nodes in module i that are initially active, and F (i)(m, k) the probability that a node

of degree k in module i with m active neighbors will become active, we have

q
(i)
n+1 = ρ

(i)
0 + (1− ρ(i)

0 )
∑
k

k

z(i)
p

(i)
k

k−1∑
m=0

(
k − 1

m

)
(q(i)
n )m(1− q(i)

n )k−1−mF (i)(m, k) (4.6)

:= g(i)(q(i)
n ) (4.7)

where

q(i)
n :=

∑
j eijq

(j)
n∑

j eij
(4.8)

z(i) :=
∑
k

kp
(i)
k . (4.9)

Here q(i)
n represents the probability that a randomly chosen neighbor of a node at tree

level n in module i, is active, and z(i) is the average degree in module i.

We can iterate this equation to find q
(i)
∞ = limn→∞ q

(i)
n , and then translate this into the

asymptotic density of active nodes by the formula

ρ(i)
∞ = ρ

(i)
0 + (1− ρ(i)

0 )
∑
k

p
(i)
k

k−1∑
m=0

(
k

m

)
(q(i)
∞ )m(1− q(i)

∞ )k−1−mF (i)(m, k). (4.10)

Next, we note that this setup is substantially more general than we need for our

purposes. The Watts cascade model is obtained by setting

F (i)(m, k) =

1 m ≥ θk

0 m < θk

(4.11)

In this case, Equation 4.6 can be rewritten as

q
(i)
n+1 = ρ

(i)
0 + (1− ρ(i)

0 )
∑
k

k

z(i)
p

(i)
k

k−1∑
m=d1/θe

(
k − 1

m

)
(q(i)
n )m(1− q(i)

n )k−1−m (4.12)
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Finally, we demonstrate how to translate the discrete-time update equation Equa-

tion 4.6 into an ODE. If we assume that nodes update their state in random order at a

rate of f fraction of the nodes per unit time, then we can describe the state of the network

at time t by the variables q(i)(t), which obey the ODE

dq(i)

dt
= f

[
g(i)(q(i)(t))− q(i)(t)

]+
(4.13)

where g(i) is defined in Equation 4.7 and [·]+ denotes the positive part of the quantity in

square brackets. The initial condition is q(i)(0) = ρ
(i)
0 .

In [29], Gleeson presents the solution of this ODE in comparison with direct numerical

simulation of the corresponding network of O(105) nodes, finding excellent agreement.

4.3.2.1 Special cases

The presentation above is only one of three formulations given in [29]. The other two can

be obtained straightforwardly from the one presented here, as we now describe.

First is the case where there is no modular structure. In simple terms, we have M = 1,

and e is the 1× 1 matrix 1. Dropping all “(i)” superscripts gives exactly the appropriate

formulation for a network without modular structure.

Next is the case of a network without a modular structure but with degree correlations.

Mathematically, the trick is to consider each value of degree k to define a “module”

consisting of all those nodes having degree k. The joint degree distribution P (k, k′),

defined as the probability that a randomly selected link joins a node of degree k to a node

of degree k′, then serves directly as the mixing matrix e. Finally, this situation allows for

degree-targeted seeding; that is, the initial density ρ
(k)
0 represents the probability that a

node of degree k is active initially.

4.3.3 Degree-targeted seeding

We now present a generalization of the Gleeson’s framework, described in subsection 4.3.2,

to model cascading dynamics on a modular network in a way that allows for seed nodes

to be selected with a probability that depends on their degree.

The generalization is simple. Instead of the initial active density being ρ
(i)
0 , it now

depends on degree k, and we write ρ
(i)
0,k as the probability that a randomly selected node
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in module i having degree k is active initially. This generalization allows to model ana-

lytically cases where, for example, a cascade is initialized by activating the highest-degree

nodes in a given module. The case that initialization is independent of node degree is

recovered by setting ρ
(i)
0,k = ρ

(i)
0 for all k. The total fraction of nodes initially activated is

given by

ρ
(i)
0,tot =

∑
k

p
(i)
k ρ

(i)
0,k. (4.14)

We remark that as noted in subsubsection 4.3.2.1, it is already possible to model

degree-dependent seeding within the framework that Gleeson presents. However, this is

restricted to cases where there is not modular structure, and the solution requires to keep

track of infinitely many dynamical variables {q(k)
n |k ∈ N}. As we will show, it is possible

to model degree-targeted seeding in a modular network in a way that is only marginally

more computationally intensive than the uniform-seeding case. In particular, the number

of dynamical variables required is the same, while the number of parameters roughly

doubles (from O(M2) +Mkmax to O(M2) + 2Mkmax).

Following the derivation in [29], we assume the network is locally treelike, and denote

by q
(i)
n,k the probability that a node in module i having degree k at level n of the tree is

active, conditional on its parent (at level n + 1) being inactive. Accounting for degree-

weighted seeding, the variables q
(i)
n,k obey the recursion relation

q
(i)
n+1,k = ρ

(i)
0,k + (1− ρ(i)

0,k)
k−1∑
m=0

(
k − 1

m

)(
q(i)
n

)m (
1− q(i)

n

)k−1−m
F (i)(m, k) (4.15)

where q(i)
n is given by

q(i)
n =

1∑
j eij

∑
j

eij

[∑
k

k

z(j)
p

(j)
k q

(j)
n,k

]
. (4.16)

The total density of active nodes can be constructed by

ρ(i)
n =

∑
k

p
(i)
k

[
ρ

(i)
0,k + (1− ρ(i)

0,k)
k∑

m=0

(
k

m

)(
q(i)
n

)m (
1− q(i)

n

)k−m
F (i)(m, k)

]
:= H(i)(q) (4.17)
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The variables q(i)
n represent the probability that a randomly chosen neighbor of a node

in module i at tree level n is active, hence the factor k/z(j). With this in mind, we can

interpret the update rule Equation 4.15 as follows. Given a node in module i with degree k

at tree level n whose parent is not active, it was active from the start with probability ρ
(i)
0,k.

With probability 1−ρ(i)
0,k, it was not active from the start, and has a chance to be activated

by its k− 1 children. Each of those k− 1 children is active with probability q(i)
n , meaning

that the probability that m of them are active at once is
(
k−1
m

) (
q(i)
n

)m (
1− q(i)

n

)k−1−m
. If

m children are active, then the focal node becomes active with probability F (i)(m, k).

Finally, consider the unconditional probability ρ
(i)
n that a node in module i at tree

level n is active. If we choose a node at random from module i, it has degree k with

probability p
(i)
k . Given that it has degree k, it was active from the start with probability

ρ
(i)
0,k. Otherwise, it has k neighbors, each of which is active with probability q(i)

n . The total

number of active neighbors then follows the binomial distribution seen in Equation 4.17,

and the focal node becomes active with probability F (i)(m, k) if it has m active neighbors.

It may appear over-complicated that we must keep track of a variable q
(i)
n,k for every

module i and every degree k. However, the dependence on k is such that we can compose

equations (4.15) and (4.16) to obtain a recursive formula for q(i)
n directly. We have

q
(i)
n+1 =

1∑
j eij

∑
j

eij

[∑
k

k

z(j)
p

(j)
k

(
ρ

(j)
0,k + (1− ρ(j)

0,k)· (4.18)

k−1∑
m=0

(
k − 1

m

)(
q(j)
n

)m (
1− q(j)

n

)k−1−m
F (j)(m, k)

)]
:= G(i)(qn) (4.19)

Note that if ρ
(i)
0,k = ρ

(i)
0 for all k, then Equation 4.19 reduces to Equation 4.8 composed

with Equation 4.6.

We can further extend this framework to describe the time course of the dynamics

obtained by assuming that nodes update asynchronously at a given rate per unit time.
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Following the same reasoning as in [29], we have

dq(i)

dt
= f

[
G(i)(q)− q

]+
dρ(i)

dt
= f

[
H(i)(q)− ρ

]+ (4.20)

Intuitively, the selection of seed nodes should have a notable impact on the spreading

dynamics. To validate this, we replicate the numerical experiment performed by Gleeson

in [29]. The experiment consists of a network of four modules, connected in a ring. Their

degree distributions are Poisson with mean 5.8, Poisson with mean 8, regular with degree

8, and regular with degree 8, respectively. The mixing matrix is

e =
1

29.8


5.5 0.15 0.15 0

0.15 7.7 0 0.15

0.15 0 7.7 0.15

0 0.15 0.15 7.7

 (4.21)

The initial condition is that 1% of the nodes in the first module are active, and the

threshold is taken to be θ = 0.18. For these parameter settings, the cascade eventually

takes over the whole network, but reaches each of the modules at different times, due

to their differing internal characteristics (i.e. degree distributions) and the nature of the

links between them (as encoded by the matrix e).

To see the effect of seeding the highest-degree nodes in the network, we recreate

calculations for the same network using the same fraction of nodes initially activated (i.e.

1% of the first module), selecting nodes uniformly at random on the one hand, and on

the other hand selecting them according to highest degree.

For concreteness, we now explicitly construct ρ
(i)
0,k for the case where we seed only the

highest-degree nodes in the network. Say we have, for each module, a target fraction of

nodes that we would like to activate initially, ρ
(i)
0,tot ∈ [0, 1] for i = 1, . . . , d. We would like

to choose ρ
(i)
0,k such that the appropriate total number of nodes are activated, but only the

nodes of highest possible degree are chosen.

To do this, we need to find, for each module i, a value Ki such that the fraction of

nodes in module i having degree greater than or equal to Ki is close to ρ
(i)
0,tot. Formally,

64



let

Ki = min

{
K

∣∣∣∣∣∑
k>K

p
(i)
k ≤ ρ

(i)
0,tot

}
(4.22)

with the understanding that the minimum of an empty set is +∞. Then, define

ρ
(i)
0,k =


1 k > Ki

ρ
(i)
0,tot −

∑
k>Ki p

(i)
k k = Ki

0 k < Ki

(4.23)

We then construct the ODE defined in Equation 4.20, with threshold θ = 0.18. Results

are shown in Figure 4.1. Note excellent agreement between theory and experiment for

the “baseline” case, i.e. seed probability independent of degree, as considered by Gleeson;

the solid and dashed orange curves nearly perfectly overlap each other. This tells us

that our generalization does in fact reduce to the known model when dependence of seed

probability on degree becomes trivial. For the degree-weighted case, we also see nearly

perfect agreement, indicating that our approach is sound.

Next we consider a slight modification of the above example, to highlight the effect of

maximum-degree seeding. In particular, we take the same network as a above, but with

threshold θ = 0.21. We choose this value because if seeding is independent of degree,

we see no global cascade, while we do see a global cascade if seeding is targeted to the

highest-degree nodes. Results are presented in Figure 4.2.

4.4 Application: extending work on optimal modu-

larity

Here we describe extensions to the research presented in [48]. In that work, the authors

consider a network composed of two modules, with a fraction µ ∈ [0, 1] of the links joining

nodes in the same module and the remaining (1−µ) fraction of the links joining nodes in

different modules. On this network, they consider linear threshold dynamics of the type

described above, with seed nodes localized to one of the modules.

The main result of [48] is that for certain values of the seed density, there is an optimal

range of values of the modularity parameter µ, such that within this range the cascade
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Comparison of degree-weighted to uniform seeding, numerical and analytic, = 0.18

Figure 4.1. Demonstration of the performance of the approximate ODEs obtained by
the treelike approximation under the assumption of degree-dependent seeding. Param-
eters are identical to those used to create Fig. 1 in [29]. Here we display both the total
fraction of active nodes (left) and the rate of increase of the number of active nodes
(right) in each module, for both uniform (top) and degree-targeted seeding (bottom).
Solid curves are solutions of the ODE system Equation 4.20, and dashed curves are the
corresponding quantities in a direct numerical simulation of linear threshold dynamics
on a network of size N = 5× 105, averaged over 10 realizations of the network. nodes.

covers the whole system, while on either side the cascade remains localized to the module

where it began. Their conclusions follow from both direct simulations of dynamics on

networks and calculations based on the analytical framework developed by Gleeson [29].

We now generalize their results in two ways. First, we consider degree distributions

with a tunable extent of degree heterogeneity, and we allow for degree-targeted seeding.

The first aspect, degree heterogeneity, was discussed in the SI of [48], where the authors

present results for the LFR benchmark networks [44], and state that degree heterogeneity

does not change the results qualitatively. Here, instead, we treat degree heterogeneity

explicitly as a control parameter, quantified by pnest ∈ [0, 1]. The parameter pnest enters

the analysis through the degree distribution:

pk = pnestp
pow
k + (1− pnest)p

poi
k (4.24)
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Figure 4.2. As in Figure 4.1, but with threshold θ = 0.21. Note that with uniform
seeding (top), the cascade does not reach the whole network, while for maximum-
degree seeding, it does. Again we see excellent agreement between numerical results
and analytic predictions.

where ppow and ppoi are power law and Poisson degree distributions, respectively, each

with mean z (which we take, for now, to be 20). For completeness, we have

ppow
k =

1

ζ(γ, λ)
(λ+ k)−γ (4.25)

with λ chosen such that
∑

k kp
pow
k = z, and ζ(γ, λ) =

∑
k(λ + k)−γ is the Hurwitz zeta

function, and

ppoi
k =

zke−z

k!
. (4.26)

The question of degree-targeted seeding was not addressed in [48], and we use the

new analytic framework presented in subsection 4.3.3 to do so. Results are presented in

Figure 4.3. The bottom row (uniform seeding) exactly recreates the results of [48]. We see

that as nestedness (degree heterogeneity) increases, the region of incomplete cascade in the

first module grows, indicating that the system becomes more resilient to cascading failures.

However, we observe an opposite tendency in the top row (degree-targeted seeding). As

degree heterogeneity grows, cases of partial cascade become less common, and the system

is much more susceptible to a global cascade even with a small fraction of seed nodes.
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This difference aligns well with the intuition that degree-heterogeneous networks are

“robust yet fragile”, as famously demonstrated by the pair of papers by Cohen et. al.

that treat percolation on networks with a power law degree distribution, where occupation

probability is either uniform or targeted by highest degree [17, 18].

4.5 Conclusion

In this work we have considered a binary-state linear threshold model as a toy model

for cascading extinctions in a mutualistic ecosystem. The linear threshold model allows

us to account for degree heterogeneity and modularity in the underlying network, and

we present a novel analytical approach that can illuminate the effect of degree-targeted

seeding of cascades on such a network. The framework is very general and can be ap-

plied to analyze many different sorts of dynamics on networks, including degree-targeted

percolation (as previously studied by other means [17, 18]).

We then applied this new analytical formulation to understand the effect of degree-

targeted seeding in a modular, degree-heterogeneous network. Previous work on this

system under the assumption of uniform seeding found that there is a finite range of

“optimal modularity” within which a cascade initiated in one module will spread to the

whole network, and that this conclusion is qualitatively unchanged by degree heterogene-

ity. The fact that too little modularity leads to a lack of global cascade can be understood

by noticing that the more links exist between modules, the less likely it is for a node in

the first module to be linked to a seed node.

In contrast, we find that seeding a cascade at the network’s highest-degree nodes

substantially weakens the damping effect of low modularity, leaving the system susceptible

to a global cascade with a much number of seed nodes than are needed when seeds are

selected independent of degree. Unsurprisingly, the size of this effect grows with degree

heterogeneity.
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Figure 4.3. Summary of the joint effect of modularity and nestedness on the extent of
cascade spreading, under both uniform and degree-targeted seeding. Color indicates
extent of the eventual cascade, as a fraction of the whole network; yellow is 1, green
is 0.5, and blue ranges between 0 and 0.3. The green region, present in every panel
for µ . 0.2, corresponds to the cascade completely covering the first module (where
the seed nodes are located) and not spreading at all to the second. The blue region
corresponds to the situation that the cascade spreads to only part of the first module.
Parameters used here are: θ = 0.4, k = 20. In these figures, ρ0 is the fraction of
the first module that is infected, which is off from the notation in [48] by a factor of
two. The top set of heatmaps is from iteration of the equations (4.19)–(4.17), and
the bottom set is from averaging over direct simulation of the network dynamics, on
networks of size N = 2.5× 104, averaged over ten realizations.
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Chapter 5

Conclusion

5.1 Lessons Learned

What have we learned? The lessons I, personally, take from this dissertation operate at

two levels. There are object-level lessons, insights about the systems under study. And

then there are meta-lessons, insights that concern how and why we were able to obtain

those object-level lessons.

5.1.1 Object-level lessons

From coupled entrainment, we learned that collective behavior can arise in more than

one way. In particular, we considered top-down and bottom-up processes that establish

frequency and phase order in a heterogeneous population of oscillators.

From coarse-graining, we observed that partially-synchronized networks of oscillators

admit a dynamical description at a coarse-grained level. Moreover, that dynamical de-

scription has the same form as the one predicted in the N → ∞ limit for the case of a

modular coupling architecture.

From degree-targeted seeding, we learned that the initial conditions of a spreading

process strongly influence the outcome of that spreading process. We also established

quantitatively that the impact of targeting nodes by degree is greater for more degree-

heterogeneous networks. Indeed, degree-targeting on a degree-regular network is identical

to distributing nodes uniformly at random. More specifically, we found that degree tar-

geting facilitates global cascades in modular networks.
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5.1.2 Meta-lessons

First and foremost, this dissertation as a whole demonstrates the potential of toy models to

help us understand the principles that underlie collective behavior. Any study of collective

behavior that does not concern itself with concrete examples is ultimately impotent, but

not all examples are created equal. Without sufficient simplification, general principles

are liable to be lost in the details. In each chapter, we begin with a class of phenomena,

and impose simplifying assumptions that allow us to derive precise relations between

quantities of interest.

Next, there are commonalities in the mathematical reasons that each of the toy models

in question is tractable. Broadly, tractability in the present work has its origin in linearity,

symmetry, and low-dimensionality.

In coupled entrainment, the initial problem of locating a fixed point is in general

nontrivial. But thanks to the simplifying assumptions we made, there exists a fixed point

at which the influence of the coupling term exactly balances out to zero, irrespective of

coupling strength. The fact that the fixed point in question stays at the same location

for all values of coupling strength means that the linear stability problem is especially

simple, since the state-dependence of the linearization is trivial. And of course, the very

procedure of linearization takes advantage of the fact that it’s straightforward to exactly

solve the dynamics of a linear system.

In coarse-graining, we take advantage of the fact that coupled oscillators tend to

align with one another to conclude that the system can be effectively described with

fewer dimensions than its native formulation. By making a fortuitous ansatz about the

form of the dynamics of those reduced variables, the problem of inferring equations of

motion becomes linear, and hence computationally tractable. Finally, we observe that the

precision with which coarse-grained variables evolve autonomously depends on symmetry

between the fine-grained variables corresponding to each cluster; within a cluster, all the

oscillators should be both phase-locked and coupled in the same manner to the rest of

the system. Said differently, the oscillators within each cluster should be symmetric with

each other in the coupling network, as well as being phase locked.
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In cascades, they key analytical reduction replaces each module in a network with a

single variable, representing the probability that any given node in that module is active.

On the face of it, it’s remarkable that such a quantity should evolve autonomously, without

needing to keep track of the whole state of the network. The reason this reduction is

possible is that there is a statistical symmetry between oscillators within a given module,

by construction of the networks we consider. That statistical symmetry, in turn, gives us

a low-dimensional model that reproduces coarse observables to high accuracy.

5.2 Future directions

We finish by discussing some possible directions for further inquiry building off of the

work presented here.

5.2.1 Coupled Entrainment

The work on coupled entrainment could be extended by bending or breaking some of

the simplifying assumptions that were used. Perhaps most prominently, the entrainment

signal considered is not possible to construct as an L2 function. It would be interesting

to consider approximations to that entrainment signal with finite input energy, and to

see in what sense the behavior of the approximating systems approach the behavior of

the limit system presented here. Conversely, it may be that a different choice of natural

frequency distribution would admit a finite-energy entrainment signal that also leads to

a splay state with comparable linear stability properties.

5.2.2 Coarse Graining

The coarse-graining work could be extended in several directions, as outlined in that

chapter. I briefly recall them here:

5.2.2.1 Closure methods

It is possible to write exact evolution equations for the coarse-variables if you allow explicit

time-dependence through the residuals xi(t) = zσ(t)− exp(iθi(t)).

If one could obtain an accurate expression for xi in terms of microscopic parameters

ωi, Kij, and the coarse variables zσ, then the explicit time-dependence could be removed,
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leaving an autonomous ODE for the coarse variables {zσ}. A promising approach could

be to build on the work of Gottwald concerning collective coordinates [32].

Another possible way to remove the explicit time-dependence is essentially take a more

data-driven approach to the above procedure. The time-dependence of the coefficients in

the ODE governing the coarse variables can be computed directly from the fine-grained

time series, so one could conceivably infer a functional relationship between those coef-

ficients and the coarse-grained variables using a method analogous to the one we used

to infer a functional relationship between ż and z. If such a function fit is successful, it

would render that ODE autonomous, albeit with potentially more intricate dependence

on zσ.

5.2.2.2 Data-driven function discovery

Stripping away yet another layer of theory, we can remain largely agnostic about the

functional form of the equations that should govern ż and infer them using a procedure

such as SINDy [13]. Given the enormous complexity of the space of functions f : CC →

CC , it is prudent to impose certain restrictions on the function dictionary we choose.

First, the OA ansatz and its associated dimension reduction shows that the reduced

model exhibits on-site and pairwise terms, and no higher-order (i.e. three-or-more-

particle) terms. Moreover, each coupling term is of the same form. Therefore it is rea-

sonable to suppose that our function basis should contain a set of onsite terms and a

set of coupling terms, and that these terms should be replicated for each node and edge,

respectively.

Next, it is well known that coarse-graining of dynamics can induce memory effects

[80], so it is reasonable to expect that a coarse-grained model including memory or nonlo-

cality (in the form of polyadic coupling terms) would be effective. Data-driven discovery

of coarse-grained dynamical models including memory is discussed in [56]. Polyadic cou-

pling terms make no conceptual difference, but combinatorial explosion may make their

inclusion computationally costly.

Finally we remark on some physical principles that inform our methods for inferring

coarse-grained dynamical models. In the coarse-grained equations arising from the OA
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ansatz, the coefficient of the linear term has negative real part, and the coupling matrix

NσK
σσ′
/2N is real. These conditions together imply that the C-fold product of the unit

disk is invariant; in other words, if all complex phases zσ initially have magnitude not

greater than 1, then they will continue to have magnitude not greater than 1 for all time.

This condition breaks down if we allow the coupling matrix to have an imaginary part

or the coefficient of the linear term to have positive real part, and so we impose those

constraints during our inference procedure.

Those constraints can be thought of in a more general context. We know that the

coarse-grained variables zσ should always remain bounded in the unit disk, because they

are averages of quantities on the unit circle. Knowing this, we can perform constrained

inference of the right-hand side of an ODE governing those variables, with the constraint

being that a function is feasible only if the corresponding ODE leaves the appropriate set

in state space invariant.

Such a constraint may appear unruly. Notice, however, that we only need to impose

that the vector field never points outward at the boundary. If we alternately write the

system in terms of amplitudes and phases, that condition is simply ṙσ ≤ 0 whenever

rσ = 1 and rσ′ ≤ 1 for all σ′. Moreover, this constraint is convex! That means that if we

construct a basis of functions f1, . . . , fL that all obey the disk-invariance condition, then

any convex combination of those basis functions will obey it as well. Given such a basis,

we can fit ż = a1f1(z) + · · · + aLfL(z) with ai ≥ 0, and rest assured that the resulting

right-hand side will obey the constraint that the coarse variables z remain bounded in the

appropriate way.

5.2.3 Degree-targeting Cascades

Finally, the framework of degree-targeted seeding of discrete processes on modular net-

works has several possible extensions and applications. We presently only apply our

framework to the Watts model on a two-module network, while it is applicable much

more broadly. Certainly varying network topologies would be very interesting, but per-

haps more expansive would be consideration of other dynamics. For example, we consider

only the case of a fixed threshold for the entire network. We could relax this assumption
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to allow for a distribution of thresholds, or a number threshold as opposed to a fractional

threshold. Degree-targeting is also much more general than the case of maximum-degree

seeding that we consider here. The framework we present could also be used, for example,

to analyze targeting of low-degree nodes. Lastly, we focus primarily here on the asymp-

totic state of the network, while we could also look in more detail at transient dynamics

to uncover information about the routes over which cascades tend to travel.
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