
Physica D 427 (2021) 133004

a

b

p
c
c
o
a
p
r
o
r
p
w
c
a
t
s
s
h
i
w
e
p
o

h
0

Contents lists available at ScienceDirect

Physica D

journal homepage: www.elsevier.com/locate/physd

Data-driven stochasticmodeling of coarse-grained dynamicswith
finite-size effects using Langevin regression
Jordan Snyder a,∗, Jared L. Callaham b, Steven L. Brunton b, J. Nathan Kutz a

Department of Applied Mathematics, University of Washington, United States of America
Department of Mechanical Engineering, University of Washington, United States of America

a r t i c l e i n f o

Article history:
Received 1 April 2021
Received in revised form 7 June 2021
Accepted 28 June 2021
Available online 25 August 2021
Communicated by T. Wanner

Keywords:
Coupled oscillators
Stochastic modeling
Finite-size effects
Coarse-graining
Data-driven methods

a b s t r a c t

Obtaining coarse-grained models that accurately incorporate finite-size effects is an important open
challenge in the study of complex, multi-scale systems. We apply Langevin regression, a recently
developed method for finding stochastic differential equation (SDE) descriptions of realistically-
sampled time series data, to understand finite-size effects in the Kuramoto model of coupled oscillators.
We find that across the entire bifurcation diagram, the dynamics of the Kuramoto order parameter
are statistically consistent with an SDE whose drift term has the form predicted by the Ott–Antonsen
ansatz in the N → ∞ limit. We find that the diffusion term is nearly independent of the bifurcation
parameter, and has a magnitude decaying as N−1/2, consistent with the central limit theorem. This
shows that the diverging fluctuations of the order parameter near the critical point are driven by a
bifurcation in the underlying drift term, rather than increased stochastic forcing.

© 2021 Elsevier B.V. All rights reserved.
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1. Introduction

Collective behavior is an important and fascinating set of
henomena that occurs in a wide array of both naturally oc-
urring and engineered systems. Examples include flocking and
ollective foraging of groups of animals, synchronous flashing
f fireflies, correlated activity of neurons in sensory systems,
nd rolling blackouts in electric power grids. Characterizing such
henomena relies on a systematic construction of coarse-grained,
educed-order models that parsimoniously capture the physics
f system-wide (macro-scale) observables. For instance, the Ku-
amoto model of coupled oscillators, with its synchronization
hase transition, is a paradigmatic model of collective behavior,
ith the construction of reduced-order models having been suc-
essfully developed over the many years since its introduction. In
ddition, much is known about the statistics of fluctuations near
he phase transition for finite system sizes, and their scaling with
ystem size has been shown to be anomalous relative to typical
tatistical physics problems. However, comparatively little work
as been done to systematically incorporate finite-size effects
n reduced-order models of coupled oscillators. In this paper,
e apply Langevin regression, a recently introduced method for
xtracting SDE descriptions of realistic time-series data [1], to the
roblem of obtaining physically interpretable stochastic models
f finite-size effects in the Kuramoto model.

∗ Corresponding author.
E-mail address: jsnyd@uw.edu (J. Snyder).
ttps://doi.org/10.1016/j.physd.2021.133004
167-2789/© 2021 Elsevier B.V. All rights reserved.
The determination of collective behavior is related to the con-
struction of closure models which aim to characterize the effect
of unresolved degrees of freedom upon observed coarse-grained
dynamics. The unresolved and unmeasured degrees of freedom
lead to the manifestation of randomness and memory effects,
even when the underlying laws of motion are deterministic and
memoryless [2–4]. Thus it is natural to seek a stochastic differ-
ential equation (SDE) as a coarse-grained model. We may further
desire that our coarse-grained model be interpretable, suggesting
that it may be appropriate to regress to a given family of SDEs.

Coarse-grained model reductions are often considered with
the canonical Kuramoto model of coupled oscillators [5], which
has long been studied as an example of collective behavior
[6–10]. The Kuramoto model features a composition of many
coupled, nonlinear oscillatory units with distinct natural frequen-
cies, where the pairwise coupling tends to drive phases to syn-
chronicity. Importantly, the Kuramoto model provides tractable
coarse-grained approximations in certain special limits [11,12]
despite its rich behavioral phenomenology [13–15]. In addition,
the Kuramoto model and its variants describe a number of syn-
chronization phenomena in domains of diverse nature such as
coupled Josephson junctions [16], neuroscience [17], chemical
oscillators [18,19], and the power grid [20]. The synchronization
observed in the Kuramoto model allows for asymptotic approx-
imations of a closure model. In the seminal work of Ott and
Antonsen [12], they showed that in the N → ∞ limit and under
ertain conditions on the distribution of natural frequencies and
nitial phases, the center of mass of a population of Kuramoto

https://doi.org/10.1016/j.physd.2021.133004
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scillators remarkably obeys an autonomous ODE which under-
oes a pitchfork bifurcation as the coupling strength is varied,
.e. an exact closure model can be constructed. Other studies
ave focused on complex coupling topologies, proposing tech-
iques using spectral information to merge nodes together [21]
r otherwise systematically discarding irrelevant degrees of free-
om [22]. Still others take a more strictly data-driven approach
nd seek closed equations of motion for low-order moments of
he distribution of phases [23,24] or to identify good coarse-
rained variables via manifold learning techniques [25]. Finally
here are approaches that employ a ‘‘collective coordinate’’ ansatz
overning the phase of each oscillator within a phase-locked
luster, and thereby arrive at a closed equation of motion [26–30].
Our aim is to construct an order-parameter description for

inite-sized Kuramoto systems, and more broadly provide math-
matical methods for characterizing finite-sized coarse-grained
odels. This has been studied previously using nonequilibrium
tatistical mechanics [31], whose results are indirect and difficult
o interpret. Others have considered the ensemble-variance in the
teady state order parameter magnitude, and dynamical fluctua-
ions under quenched disorder [32–38]. While precise finite-size
caling results can be obtained for ensemble statistics of the
teady-state order parameter, investigations of dynamical fluctu-
tions were limited to numerical simulation. Most importantly,
nvestigations of dynamical fluctuations did not take the step of
nterpreting the order parameter dynamics as governed by an
DE. In this paper, we build on prior work concerning coarse-
rained modeling of Kuramoto oscillators by applying Langevin
egression to simulated trajectories. We obtain physically mean-
ngful SDE models for finite-size effects, demonstrating that the
xotic finite-size scaling behavior near the critical point is con-
istent with white noise forcing with a magnitude that scales
s N−1/2. We conclude that critical finite-size scaling behavior is
riven mainly by instabilities in the underlying dynamics rather
han anomalously large forcing.

. Background

Networks of coupled oscillators are an extremely popular
bject of study for applied mathematicians interested in col-
ective behavior, owing to their rich phenomenology, relative
ractability, and broad abstract representation of dynamic behav-
or. A paradigmatic model of coupled oscillators is the Kuramoto
odel:

i̇ = ωi +
1
N

N∑
j=1

Kij sin(θj − θi), i = 1, 2, . . . ,N (1)

here θi is the phase of oscillator i, ωi is its natural frequency,
nd (Kij) is the coupling matrix. A fundamental result due to

Kuramoto [5] is that if coupling is mean-field (i.e. Kij ≡ K for
all i, j) and natural frequencies are distributed according to a
symmetric, unimodal probability density, then there is a critical
coupling strength Kc such that for K > Kc the system is (partially)
synchronized while for K < Kc the system is incoherent. In
particular, synchrony can be measured by the order parameter
z := ⟨exp(iθj)⟩Nj=1 ∈ C, whose magnitude |z| is near zero if
scillators’ phases are spread evenly around the unit circle, and
s nonzero if oscillators’ phases break rotational symmetry and
luster around a preferred phase. See Fig. 1 for a visualization.
Next, we review two major threads of research concerning the

uramoto model. First is research that seeks equations of motion
or reduced or coarse-grained degrees of freedom, towards ob-
aining a mechanistic understanding of collective behavior, and
s generally carried out in the thermodynamic (N → ∞) limit.
econd is research that seeks to understand synchronization as
2

a phase transition by investigating how the properties of finite
systems behave as N → ∞. Our work bridges these threads by
learning stochastic reduced-order models for finite systems and
studying their scaling with N .

2.1. Dimension reduction methods

There has been extensive work studying the conditions un-
der which the Kuramoto model admits description as a lower-
dimensional dynamical system [11,39–41]. In the case that all
natural frequencies are the equal, it is known that for any N ≥

3, the full N-dimensional phase space is foliated by invariant
two-dimensional tori [42], and the dynamics on those tori are
generated by the action of the Möbius group [43]. In effect, this
means that the dynamics of the Kuramoto model with identical
natural frequencies is two-dimensional, regardless of the number
of oscillators N .

Concerning different natural frequencies, Ott and Antonsen
[12] showed that if coupling is through a mean-field (i.e. Kij ≡ K
for all i, j) and if natural frequencies ωi are drawn from a Cauchy
distribution with location Ω and scale δ, then there is a closure
for the order parameter z := ⟨exp(iθj)⟩Nj=1 ∈ C, namely

ż = i(Ω + iδ)z +
K
2
(z − |z|2z). (2)

This equation is valid in the N → ∞ limit and technically
only for certain (distributional) initial conditions; a follow-on
paper [44] established under mild assumptions that the manifold
in question is attractive and so the above equation should hold
after some initial transient, while recent work has shown that
the Ott–Antonsen (OA) manifold is not attracting for finite N [45].
quivalent results hold for the case that the oscillators are or-
anized into modules, where within each module the oscillators’
atural frequencies are drawn from a Cauchy distribution and the
oupling strength between oscillators i and j depends only on the
modules they belong to. If the distribution of natural frequencies
is not Cauchy but a different rational function of some order, then
a similar reduction is possible, but with one variable for each pair
of poles of the natural frequency distribution [46].

Another analytical tool for deriving reduced models of coupled
oscillator systems is the ‘‘collective coordinate’’ method intro-
duced by Gottwald [26]. This method represents the state of
the population of oscillators by a shape function together with
a time-varying constant of proportionality, the collective coordi-
nate, such that the residual phase of any phase-locked oscillator is
given by the collective coordinate multiplied by the shape func-
tion evaluated at its natural frequency. The resulting equations
offer remarkably accurate predictions for finite networks, includ-
ing the scaling behavior of the position of the critical point [26],
have been applied to more complex network structures [28,29],
and have been used as inductive biases to guide data-driven
discovery of coarse-grained models [47].

Finally, there are data-driven approaches to discovering
coarse-grained models for coupled oscillator systems. Promi-
nent among these is the equation-free (EF) framework, which
estimates the time derivative of a coarse variable based on pro-
jections of numerically integrated fine-grained dynamics. The EF
approach has been used to obtain accurate coarse-grained numer-
ical models of oscillator systems with a collective coordinate-type
approach [23] and for networks with spectral gaps [24]. More re-
cently, this approach has been combined with manifold learning
techniques to learn the coarse-graining map itself in addition to
the dynamics of the coarse variables [25].
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Fig. 1. Emergence of synchronization in a system of N = 32 coupled Kuramoto oscillators, and the associated order parameter, at the level of individual phases
left) and probability density (right). On the left, each colored line is the phase of one oscillator through time, plotted on a circle in the plane perpendicular to the
-axis. Line color corresponds to the oscillator’s natural frequency ωi . On the right, color indicates the number density of oscillators as a function of phase θ and
ime t . In both plots, the solid black curve depicts the order parameter z = ⟨exp(iθj)⟩Nj=1 over time, and the dashed line is the origin. The trajectory of the order
arameter is also projected onto the back plane. Initially, the oscillators’ phases are spread evenly around the circle and |z| ∼ 0. Due to the attractive coupling, the
scillators’ phases quickly approach one another, forming a synchronized cluster of oscillators that precesses with a single frequency. The magnitude of the order
arameter quantifies how synchronized the system is as a whole, while its phase tracks the phase of the dominant synchronized cluster. Note that the oscillators
articipating in the synchronized cluster are those with natural frequencies near the middle of the distribution, while oscillators with large (positive or negative)
atural frequencies continue to drift. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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.2. Finite-size scaling

While reduced-order modeling has proven to offer accurate
nd physically meaningful descriptions of populations of coupled
scillators, little of this work deals directly with the manner in
hich models for finite systems converge as N → ∞. On the
ther hand, much is known about the finite-size scaling of certain
ummary statistics in the Kuramoto model from a statistical
hysics standpoint.
The synchronization transition in the Kuramoto model is char-

cterized by a continuous yet abrupt change in synchrony and a
iverging susceptibility, or sensitivity to external forcing, closely
elated to temporal variance of the order parameter [32–35]. Both
he abruptness of the change in synchrony and the divergence
f susceptibility are smoothed out in finite systems, and that
moothing is described by finite-size scaling relations. Progress
n this problem for the Kuramoto model has focused on applying
caling ansätze to the self-consistent equation that constrains
he stationary value order parameter, as well as to averages
nd variances of the order parameter computed via numerical
imulation [37,38,48].
While fundamental, the results described above still leave

uestions unanswered regarding the origin of the particular scal-
ng relations that are observed. Through stochastic modeling over
range of system sizes, we demonstrate that the scaling relations
resent in the Kuramoto model are consistent with an SDE whose
rift term has the form predicted by the N → ∞ theory due
o Ott–Antonsen, and whose diffusion term, capturing finite-size
luctuations, scales as N−1/2, consistent with the central limit
heorem.

. Methods

.1. Model system and analytics

We now compute the form of the SDE that we will fit to
he dynamics of the order parameter z. According to the Ott–
ntonsen ansatz, z should evolve according to an ODE of the
orm

˙ = λz + µ|z|2z (3)
3

here λ = iΩ −δ+K/2 and µ = −K/2. The solution to this ODE
ither approaches z = 0, or a fixed point or limit cycle with |z|2 =

λ/µ. However, it is clear from simulations that when N is finite,
he value of z exhibits fluctuations that persist through time (see
ig. 2). The reason for these fluctuations is that when N is finite,
he distribution of oscillators’ phases is necessarily discrete, and
o cannot approach the smooth distribution described by the OA
nsatz that allows z to evolve autonomously.
We therefore suppose that when N is finite, the statistics of

(t) = r(t) exp(iΘ(t)) will be well described by an SDE whose
rift term has the form of Eq. (3), and whose noise term quantifies
inite-size effects. Namely, we suppose that for finite N , the order
arameter is governed by an SDE of the form

z =
(
λz + µ|z|2z

)
dt + σ exp(iΘ)dW (4)

here σ ∈ R depends on N , and W = W1 + iW2 is a complex-
alued Brownian motion with independent real and imaginary
arts W1 and W2 respectively. Because W1 and W2 are indepen-
ent, adjusting the phase of the noise term by exp(iΘ) does not
ffect the distribution of the solution, while it does simplify the
ext step of the analysis. We emphasize that modeling finite-size
ffects as Brownian motion reflects an assumption that fluctua-
ions have a finite correlation time, which may or may not be
atisfied in practice, and that our goal is not to exactly model a
iven trajectory z(t), but rather its statistics.
In addition to fluctuations in time, finite Kuramoto systems

ay also exhibit uncertainty in their parameter values. For in-
tance, λ = iΩ − δ + K/2 depends on population statistics: the
ocation, Ω , and scale, δ, of the distribution of natural frequencies.
owever, the realized set of natural frequencies is a finite sample,
nd thus may not be precisely representative of the infinite
opulation. We therefore treat λ and µ as unknowns to be fit to
bserved data, in addition to σ .
For simplicity, we recast the complex-valued SDE (4) into polar

oordinates z = r exp(iΘ) so that

dr =

(
λr r + µr r3 +

σ 2

2r

)
dt + σdW1 (5)

dΘ =
(
λi + µir2

)
dt +

σ

r
dW2 (6)
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Fig. 2. Visualization of the emergency of synchronization in a system of N = 200 Kuramoto oscillators in terms of the probability density (top) and order parameter
bottom). The density plot shows that the oscillators’ phases rapidly align with one another, forming an obvious peak in density starting at time t ≳ 5. The degree
f alignment can be quantified by the magnitude of the order parameter z, depicted in orange in the bottom plot. Rather than settling down to a constant value,
he magnitude of the order parameter fluctuates due to the system’s finite size. The angle of the order parameter meanwhile closely tracks the location of the peak
n oscillator density. Oscillators’ natural frequencies were drawn from a Cauchy distribution with width δ = 1/2 and coupled with coupling strength K = 2.
here subscripts i and r denote real and imaginary values of the
espective variables. Note the σ 2/2r term in the drift function
or r , which arises due to the Itô formula for the change of
ariables [49] and ensures that r never becomes negative despite
eing subject to additive noise. Since r is the variable associated
irectly with the symmetry-breaking synchronization transition,
nd since the dynamics of r do not depend on Θ , we hereafter

focus exclusively on the dynamics of r .
We wish to investigate whether or not the dynamics of r for

finite Kuramoto systems are consistent with a model of the form
(5), and if so, what are the properties of the coefficients λ, µ, and
σ as a function of system size N and coupling strength K?

3.2. Data generation

To investigate these issues, we performed numerical simula-
tions of the Kuramoto model for different values of the number
of oscillators N , and the coupling strength K . For all experiments,
natural frequencies were drawn i.i.d. from a Cauchy distribution
with location Ω = 0 and scale δ = 1/2, meaning that the
critical coupling strength is Kc = 2/πg(0) = 1 [5]. We define
the bifurcation parameter ϵ := K − Kc , such that the symmetry-
breaking transition occurs at ϵ = 0. The number of oscillators
was taken to be each of {64, 256, 1024, 4096}, ϵ was set at 20
evenly spaced values between −1 and 1. For each value of (N, ϵ),
we simulate an ensemble of 100 systems, each with a different
sample of natural frequencies {ωi} and initial phases {θi(0)}. For
each sample we integrate the ODE (1) to a final time T = 103

ith a time resolution of ∆t = 10−3, using a 5th-order Tsitouras
cheme [50]. Finally we coarse-grained the resulting time series
θi(t)} to obtain

(t) exp(iΘ(t)) :=
1
N

N∑
j=1

exp(iθj(t)). (7)

Our goal is to obtain an SDE model that is statistically consistent
with the observed time series r(t), after discarding an initial
transient. Specifically, we seek an SDE of the form (5).
4

3.3. Inference procedure

Based on the discussion in Section 3.1, we expect that the
coarse-grained SDE will be of the form

dr =

(
ξ0r + ξ1r3 +

ξ 2
2

2r

)
dt + ξ2dWt , (8)

where the parameters ξ = (ξ0, ξ1, ξ2) are to be identified with
the recently proposed Langevin regression method for identifying
stochastic differential equations from data [1]. This method solves
both the forward and adjoint Fokker–Planck equations to enforce
consistency with both the finite-time conditional moments and
the steady-state probability distribution (PDF), both computed
after discarding an initial transient. A schematic of the overall
procedure performed in this paper is given in Fig. 3.

For each of the replicate experiments described above, we
computed the empirical PDF p̂(r) and the first two (n = 1, 2)
empirical finite-time conditional moments m̂(n)

τ (r), defined as

m̂(n)
τ (r) =

(
E

[
(r(t + τ ) − r(t))n|r(t) = r

]) 1
n . (9)

The power of 1/n ensures that the conditional moments of differ-
ent orders are dimensionally consistent with one another, so that
they can be appropriately weighted in the objective function that
we define below. For a stationary process near thermal equilib-
rium with a sampling rate much faster than any natural time scale
of the system, these moments can be directly related to the drift
and diffusion functions [51–54]. However, for many closure prob-
lems the neglected degrees of freedom have unresolved dynamics
that lead to non-Markovian memory effects upon truncation.

Sampling the system too quickly will then invalidate the as-
sumption of white-in-time forcing underlying the convergence of
Eq. (9) to a useful estimator of the drift and diffusion. On the other
hand, coarse sampling rates lead to significant finite-time distor-
tion of the conditional moments [55]. For example, the evolution
of the order parameter is smooth at short times; Eq. (9) would
significantly underestimate the drift and diffusion coefficients
at fast sampling rates. We therefore compute the conditional
moments using τ = 0.1. Langevin regression uses the adjoint
Fokker–Planck equation to correct for finite-time effects [56,57].
The empirical conditional moments m̂(n)(r) are then compared
τ
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Fig. 3. Schematic of our analysis pipeline. We first sample N i.i.d. natural frequencies {ωi} from a Cauchy distribution with location Ω and scale δ, then integrate
the Kuramoto ODE (1) forward in time from randomly assigned initial phases. We then coarse-grain the trajectory {θi(t)} to obtain the complex order parameter
z(t) = r(t) exp(iΘ(t)), and compute the joint distribution p(r(t), r(t + τ )). From this joint distribution we compute the first two finite-time Kramers–Moyal averages
(9), and finally use Langevin regression to infer SDE coefficients ξ that are consistent with the measured finite-time Kramers–Moyal averages.
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against the finite-time conditional moments m(n)
τ (r, ξ ) that would

be observed given a set of parameters ξ (see Ref. [1] for details).
Because the computed trajectories are finite, we estimate m̂(n)

τ (r)
by computing a histogram with equally-sized bins centered at
locations {ri|i = 1, . . . ,M}. In the following, we use M = 40
equally-sized bins that cover full range of observed r values.

Langevin regression solves the following optimization prob-
lem:

ξ = argmin
ξ

2∑
n=1

M∑
i=1

w
(n)
i

[
m(n)

τ (ri, ξ ) − m̂(n)
τ (ri)

]2
+ ηKLDKL

(
p̂(r) ∥ p(r, ξ )

)
+ ηℓ1∥s ⊙ ξ∥1, (10)

where ⊙ denotes the entrywise (Hadamard) product of vectors,
the weight variables w

(n)
i reflect pointwise uncertainty in the

empirical estimate of the moments, and the η variables control
the relative contributions of each of the terms in the cost function.
We have added two regularizing terms. The Kullback–Leibler (KL)
divergence DKL is a statistical measure of difference between
probability distributions, and is defined as

DKL(p ∥ q) =

∫
p(x) log

(
p(x)
q(x)

)
. (11)

The KL regularization ensures that the inferred model has a
steady-state PDF comparable to the empirical one. Finally, we
normalize the weights w

(n)
i so that they integrate to unity. Be-

cause the domain is discrete, this means enforcing the condition

∑
i

(ri+1 − ri)w
(n)
i = 1, n = 1, 2 (12)

The final term in the optimization problem, the ℓ1 norm of the
rescaled coefficient vector s ⊙ ξ , is new relative to the original
method. The subcritical systems (ϵ < 0) are linearly stable
about the origin, introducing a redundancy between the linear
and cubic terms. The ℓ1 regularization promotes sparse coefficient
vectors, encouraging the optimization problem to select zero or
near-zero coefficients where these are consistent with the data.
5

The rescaling vector s allows us to adjust the magnitudes of the
entries of ξ so that they are comparable to each other. As we
expect the noise coefficient ξ2 to decay as N−1/2, we use s =

1, 1,N1/2). We used regularization parameters ηKL = 10−3 and
ℓ1 = 10−4, as we found these values to prevent both blowup
nd premature dropout of inferred coefficients. Optimization was
arried out using the Nelder–Mead method as implemented in
cipy.optimize [58].

. Results

We first report summary statistics about the trajectories under
tudy. Fig. 4 (left) shows the time-average of the order parameter,
elative to the value predicted by the Ott–Antonsen ansatz, rOA =

ax(0,
√

ϵ/(ϵ + 1)). To the right of the bifurcation (ϵ > 0), the
istribution of the time-average of r(t) has its peak near the Ott–
ntonsen value, and has a width that shrinks with N . On the
eft, however, the presence of noise makes it impossible for r to
emain near zero, leading to a distribution of time-average r(t)
alues with a nonzero peak whose location decreases with N .
Next, Fig. 4 (right) depicts the variance of r(t) over time, as a

unction of ϵ and N . In particular we are visualizing the variance
caled by N , which we refer to as χ = N⟨(r − ⟨r⟩)2⟩. If at any
iven time t the complex phases {exp(iθi(t))} were independent,
hen we would expect their mean, z, to exhibit finite-sample
luctuations scaling as N−1/2 by virtue of the central limit theorem
CLT). That is, we would expect χ ∼ O(1), and this appears to
e the case away from the critical point. Near the critical point,
owever, substantial correlations build up among the individual
hases, and CLT scaling is no longer a good approximation.
Based on extensive numerical study, Hong et al. report that

he peak χmax of χ with respect to ϵ scales as χmax(N) ∼ N0.40.
inally, Fig. 1 of [37] reports the ensemble average of χ over 100–
000 trials, obtaining highly precise estimates of the population
verage of χ ; we remark that the full distribution of χ has
ontrivial scaling properties with N . Namely, in the far subcritical
egime (ϵ < 0) the distribution appears to be independent of N ,
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Fig. 4. Left: Violin plots of the distribution of the temporal average of r as a function of bifurcation parameter ϵ = K − Kc and N . For each value of (N, ϵ), we
ample 100 Kuramoto systems and compute the time-average of r (after discarding the transient), and depict the distribution of these 100 values as a vertical violin.
ertical lines with tick-ends depict the max and min of each set of 100 values. Dashed line is rOA , the value of the fixed point of the ODE model derived from the
tt–Antonsen ansatz, Eq. (2). Note that to the right of the critical point (ϵ > 0), values cluster around the rOA with a variance that shrinks with N . To the left of the
ritical point, values also approach rOA as N increases, but are offset from zero due to the singularity at the origin (see the term σ 2/2r in the drift term of Eq. (5)).
ight: Violin plots of the distribution of the temporal variance in r , scaled by N . As on the left, for each (N, ϵ) we observe 100 Kuramoto systems, compute the
emporal variance of r , and depict the distribution of these 100 values as a vertical violin. The ensure comparability across N , we scale the variance by N . Compare
o Hong et al. Figure 1 [37]. Note that while far from the critical point (ϵ = 0) variance appears to be inversely proportional to N (since χ := N(⟨r2⟩− ⟨r⟩2) ∼ O(1)),
s would be predicted by the central limit theorem, near the critical point χ exhibits a peak whose height grows with N , meaning that the variance decays more
lowly than N−1 .
Fig. 5. Overview of ξ parameters inferred by Langevin regression from Kuramoto order parameter trajectories. As in Fig. 4, for each value of (N, ϵ) we sample
100 Kuramoto systems, and for each system obtain an estimate of SDE parameters ξ = (ξ0, ξ1, ξ2). Vertical violins depict the distribution of the corresponding 100
quantities. ‘‘Theory’’ lines in the top panels are based on the Ott–Antonsen ansatz. ξ2 is scaled by N1/2 so that values for all N are comparable, and we can see that
ξ2 is approximately consistent with ξ2 = σN−1/2 for a global constant σ ≈ 1/

√
2.
s

hile in the supercritical regime (ϵ > 0) the distribution of χ

ppears to narrow with increasing N . We explore explanations
or this fact in Appendix A.
 g

6

An overview of parameter values inferred via Langevin regres-
ion based on trajectories of the Kuramoto order parameter are
iven in Fig. 5. In the top two panels, the brown line depicts the
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alue predicted by the theory derived by Ott–Antonsen, namely
0 = ϵ/2 and ξ1 = −(ϵ + 1)/2. In the bottom-left panel, the
orizontal line is at height 1/

√
2.

The key result in Fig. 5 is in the bottom-left panel, which de-
icts distributions of inferred values of the noise intensity, N1/2ξ2.

Langevin regression clearly shows that a noise intensity scaling
like N−1/2 is consistent with the data. Moreover, the distributions
of inferred values of N1/2ξ2 are centered on 1/

√
2, for all N and

or all ϵ. This remarkable regularity shows that when we regard
he Kuramoto order parameter as following an SDE, its critical
luctuations can be explained by a simple (white) noise process
pplied to a drift term that undergoes a bifurcation.
On the subcritical side of the bifurcation, inferred values for ξ0

luster around the theoretical value, with a spread that shrinks as
increases. For ξ1, however, inferred values show much larger

pread. This is because in the subcritical phase, r is small, and so
3 is very small. Thus its coefficient, ξ1, is very weakly constrained
nd highly susceptible to blowup. The ℓ1 term in the cost function
ubstantially mitigates this problem, but does not eliminate it
ntirely.
On the supercritical side, we also see noticeable trends with
and N . Interestingly, inferred coefficient values do not cluster
round the theoretical line. Rather, they are systematically farther
rom zero (i.e. ξ0 is more positive and ξ1 is more negative).
his indicates that finite Kuramoto systems exhibit drift behav-
or that is nontrivially different from what is predicted in the

→ ∞ limit. Alternatively, it is possible that a different noise
odel is more appropriate, and that with such a noise model

n place the drift coefficients would align with what we expect
rom Ott–Antonsen theory. In particular, it is possible that the
luctuations affecting the order parameter are correlated on a
imescale long enough that white noise is not a good approx-
mation, meaning that colored noise would be needed. Further
esearch is warranted to derive possible higher-order corrections
o the Ott–Antonsen theory.

. Discussion and conclusions

We have shown that it is possible to use Langevin regression
o regress data from finite-size Kuramoto oscillator systems onto
simple class of SDEs consisting of linear and cubic drift terms
nd additive white noise. Since in the absence of noise, this model
lass contains the equation predicted by the Ott–Antonsen ansatz
or the N → ∞ limit, we can evaluate the limiting behavior
f our learned models. We find that while the linear and drift
erms exhibit the correct direction of dependence on K , there are
substantial quantitative discrepancies even after accounting for
variance across samples of natural frequencies.

Remarkably, however, we find that the fluctuations associated
with finite system size are consistent with forcing by white noise
at a magnitude that scales with N as N−1/2. This demonstrates
that finite-size effects in complex systems can be effectively
modeled as stochastic forcing that follows CLT-like scaling, even
as response fluctuations follow highly nontrivial scaling laws,
especially near critical transitions.
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Appendix A. Scaling of χ distributions

We now discuss the scaling of the distributions of χ with N ,
for both large and small values of the bifurcation parameter, ϵ.
In particular, we see in Fig. 4 (right) that the distributions of χ
are approximately constant with respect to N when ϵ is large
and negative, while they become more narrow with increasing
N when ϵ is large and positive.

This phenomenon can be explained by the correlation between
⟨r⟩ and χ in the sub- and super-critical regimes, respectively, as
visualized in Fig. 6.

We can explain these relationships by appealing to approxi-
mate SDE models that hold when r ≈ 0 and when r ≈ r0 ̸= 0.
We begin with the SDE (5):

dr =

(
λr + µr3 +

σ 2

2r

)
dt + σdW (13)

First, when r ≈ 0, as in the subcritical regime, the r3 term is small
and we omit it, to obtain

dr =

(
λr +

σ 2

2r

)
dt + σdW . (14)

n this case the steady-state PDF is

(r) =
−2λ
σ 2 r exp

(
λr2

σ 2

)
(15)

nd its first two moments are

⟨r⟩ =

√
π

2
σ

√
−λ

(16)

r2⟩ =
−σ 2

λ
=

4
π

⟨r⟩2 (17)

which implies that χ = N(⟨r2⟩ − ⟨r⟩2) = N( 4
π

− 1)⟨r⟩2. In
articular, the distribution of χ should scale with N in the same
anner as N⟨r⟩2. Since in the subcritical regime, correlations
etween phases are weak, it is reasonable to view ⟨r⟩ as the
ean of N i.i.d. samples, and therefore subject to the central

imit theorem. The CLT would predict that ⟨r⟩ is approximately
ormally distributed with standard deviation O(1/

√
N), so N⟨r⟩2

hould be O(1) for all N .
In the supercritical regime, on the other hand, r is not small.

ather, it falls in a narrow band around some nonzero value, r0.
n this case we suppose that the drift term of Eq. (5) can be
pproximated linearly:

r = λ(r − r0)dt + σdW . (18)

here λ depends on λ, µ, σ , and r0. In this case the steady-state
DF is Gaussian:

(r) =

√
λ

2 exp
(

λ

2 (r − r0)2
)

(19)

πσ σ
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Fig. 6. Relationship between ⟨r⟩ and χ in the subcritical (left, ϵ ≤ −0.5) and supercritical (right, ϵ ≥ 0.5) regimes. Each dot corresponds a Kuramoto system,
.e. Eq. (1) with a sample of natural frequencies {ωi}. In the subcritical regime, χ is positively correlated with ⟨r⟩, while the opposite is true in the supercritical
egime.
ϵ

hich (neglecting the bounds 0 < r < 1) has moments

⟨r⟩ = r0 (20)

r2⟩ =
−σ 2

2λ
+ r20 (21)

nd thus χ = −Nσ 2/λ.
Next, we can examine the dependence of χ on r0 by partial

ifferentiation:

∂χ

∂r0
=

∂χ

∂λ

∂λ

∂r0
(22)

=
Nσ 2

2λ
2

[
6µr0 +

σ 2

r30

]
. (23)

learly Nσ 2/2λ
2
is positive; we now show that the term in square

brackets is negative. To do this we multiply it by r30 and obtain

r30

[
6µr0 +

σ 2

r30

]
= 6µr40 + σ 2 (24)

= 6
(

−σ 2

2
− λr20

)
+ σ 2 (25)

= −2σ 2
− 6λr20 < 0 (26)

here we have used the condition that r0 is a root of the drift
erm, namely that λr20 + µr40 + σ 2/2 = 0, and that λ > 0
since we consider the supercritical regime. Thus, ∂χ/∂r0 < 0,
and indeed we see that χ and ⟨r⟩ are negatively related in the
supercritical phase. Thus we should expect the distribution of χ

to be comparable to the distribution of ⟨r⟩, i.e. it should become
narrower with larger N .

These results can be understood in terms of the population
of oscillators. In the subcritical regime, when coupling is weak,
both ⟨r⟩ and χ are driven by the amount of correlation among
the oscillators’ phases, and are therefore positively related. In the
supercritical regime, on the other hand, fluctuations are driven
by the drifting subpopulation of oscillators, i.e. those whose fre-
quency does not lock to the global frequency. The larger the value
of r , the fewer oscillators remain drifting, and therefore the fewer
oscillators there are to contribute to fluctuations in r .
8

Appendix B. Normally distributed natural frequencies

Here we consider stochastic modeling of the order parameter
for Kuramoto systems where the natural frequencies are drawn
not from a Cauchy distribution, but a normal (Gaussian) distri-
bution. For comparability with the Cauchy-distributed case, we
take the standard deviation σ to be

√
π/8, so that the critical

coupling strength is Kc = 1. As before, we take 20 values of
= K − Kc evenly spaced between −1 and 1, and for each value

of ϵ perform 100 replicate experiments consisting of sampling
natural frequencies and initial conditions, and integrating the
equations of motion. We do this for the number of oscillators
N = {64, 256, 1024, 4096}.

In Fig. 7 we depict distributions of the temporal mean ⟨r⟩ and
temporal variance ⟨(r−⟨r⟩)2⟩ of the order parameter as a function
of N and ϵ (cf. Fig. 4 for the Cauchy-distributed case). As there
is no known closed-form expression for the value of the order
parameter as N → ∞ in the case that natural frequencies are
normally distributed, we omit the N → ∞ theory line in the left
panel. Note that the value of χ decays with ϵ more quickly than
it does in the case of Cauchy-distributed natural frequencies. This
is because when natural frequencies are normally distributed,
much less coupling is required to synchronize a given fraction of
the population of oscillators than when natural frequencies are
Cauchy-distributed.

In Fig. 8 we show the distribution of inferred drift and diffu-
sion coefficients for Kuramoto systems with normally distributed
natural frequencies, obtained via Langevin regression. Several key
differences from the Cauchy-distributed case (Fig. 5) are apparent.
First, the absolute size of the inferred coefficients is smaller (com-
pare vertical scales). Next, the distributions of the (rescaled) noise
strength N1/2ξ2 are not constant with ϵ. Rather, their centers
show mild increase with ϵ up to the critical point, and decay
towards zero as ϵ grows above the critical point. This indicates
that when natural frequencies are normally-distributed, the ef-
fective strength of noise decreases as more of the population
becomes synchronized. Perhaps surprisingly, this is not the case
when natural frequencies are Cauchy-distributed, owing to the
extreme heterogeneity of the Cauchy distribution.

Similarly to the Cauchy-distributed case, we also see signifi-

cant noise in the recovery of the cubic coefficient in the subcritical
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b

Fig. 7. Distributions of the temporal average ⟨r⟩ and scaled temporal variance χ = N(⟨r2⟩−⟨r⟩2) of the order parameter as a function of number of oscillators N and
ifurcation parameter ϵ. Trends agree qualitatively with those for the Cauchy case depicted in Fig. 4, including the width of the distribution of χ above vs. below

the bifurcation. Note that for small N and large ϵ, many sampled systems achieve complete synchronization, leading to nearly-constant r(t) and vanishingly small
χ . We omit these from the statistics here, and therefore the remaining cases have comparatively large values of χ (see the N = 26 cases for ϵ ≈ 1).
Fig. 8. Distributions of inferred drift and diffusion coefficients for Kuramoto systems with normally-distributed natural frequencies (cf. Fig. 5).
regime. On the other hand, we also observe irregularity at the
far-supercritical side of the bifurcation. This is due to the fact
that when ϵ is large, the system can easily become completely
synchronized, and the order parameter becomes constant with
time. In these cases a stochastic model is clearly inappropriate
and the inferred coefficients lose their meaning.
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