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What is a �complex system�?

One that exhibits emergence

Many degrees of freedom

Nonlinear dynamics

Global behavior not obvious
from local dynamics

�Magnets�
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Control

Complex systems are hard to control

Which degrees of freedom to control?

Which degrees of freedom to measure?

Realistically:

As few distinct signals as possible

As few measurements as possible =⇒ open-loop control

=⇒ Goal: Study a simple system where we can analyze the
interplay of open-loop control and collective behavior.

=⇒ Q: Which simple system?
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Inspiration : Biological Rhythms

[Videnovic et al., 2014]
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Model Class

Desired features:

Many coupled units with di�erent intrinsic, periodic behavior

Subject to external forcing with constant period

Individual units tend to attain compatible frequencies

Model System : Population of nonlinear oscillators
subject to forcing and coupling
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Phase Oscillators

Start with a phase oscillator subject to forcing:

ψ̇ = ω +Z (ψ)u(t), Z is the phase response curve

If u(t) = v(Ωt), where v is 2π-periodic, let ψ = φ + Ωt and
average over one period:

ϕ̇ = ∆ω + Λv (ϕ) =⇒ ϕ ≈ φ as t→ ∞

where ∆ω = ω−Ω is the frequency detuning and Λv is the
interaction function:

Λv (ϕ) =

2π∫
0

Z (ϕ + θ)v(θ)dθ

ϕ represents the average phase o�set
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Entrainment

A phase ϕ∗ is a stable �xed point of ϕ̇ = ∆ω + Λv (ϕ) if

∆ω + Λv (ϕ
∗) = 0 and

dΛv

dϕ
(ϕ
∗) < 0

Zlotnik et al. [2016]
J. Snyder Coupled Entrainment
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Example : Entrained Decoherence

φπ-π

-1

1

-Δω

φ*=πΔω

Λv(φ)=-φ/π

J. Snyder Coupled Entrainment
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The Kuramoto Model

θ̇i = ωi +
K

N

N

∑
j=1

sin(θj −θi)

Key features:

Hetereogeneity : ωi ∼ g(ω)

Coupling drives phases together

Trade-o� between heterogeneity and coupling at critical coupling

strength Kc = 2

πg(0)
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Phase transition in the Kuramoto model

R = 0 0 < R < 1

R ~ 1

R

1

KKc

N = ∞

N finite

Kc = point when R = 0 state becomes linearly unstable

J. Snyder Coupled Entrainment
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Variants

Way too many to list exhaustively. A sampling:

Di�erent coupling function:

θ̇i = ωi +
K

N

N

∑
j=1

G (θj −θi )

Structured coupling:

θ̇i = ωi +
K

N

N

∑
j=1

AijG (θj −θi )

Forcing:

ϕ̇i = ωi + Λv (ϕi ) +
K

N

N

∑
j=1

sin(ϕj −ϕi )
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Entrained Decoherence with Coupling

ϕ̇i = ωi + Λv (ϕi ) +
K

N

N

∑
j=1

sin(ϕj −ϕi )

where {ωi = 2

N i −1} and Λv (ϕ) =−ϕ

π
for ϕ ∈ [−π,π).

Decoherence - {ϕi = πωi} - is an R = 0 �xed point, by symmetry
of the coupling term.

Q: For what values of K is this state stable?

We analyze this model for �nite N and in the limit N → ∞

J. Snyder Coupled Entrainment
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Linear Stability in Finite Dimensions

At the �xed point {ϕ∗i = πωi}, the Jacobian has matrix elements

Jij =

(
−1
π
− K

N ∑
k 6=i

cos(ϕ
∗
k −ϕ

∗
i )

)
δij + (1−δij)

K

N
cos(ϕ

∗
j −ϕ

∗
i )

Bound the eigenvalues using the Gershgorin circle theorem:

Re(λ )≤ −1
π

+K =⇒ Kc ≥
1

π

J. Snyder Coupled Entrainment
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The limit N → ∞

Basic idea: rather than individual oscillators, consider distributions
of oscillators

{ωi ,ϕi} {g(ω),ρω (ϕ)}

Dynamics are given by a continuity equation:

∂tρω +D(vωρω ) = 0

where D is the derivative in the sense of distributions, and
vω = vω (ϕ) is the phase velocity.

Linearized dyanmics near {ρω = δπω} can be diagonalized exactly:

σ(L) =

{
−1
π

,
−1
π

+
K

2

}
=⇒ Kc =

2

π
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Conclusions

In �nite dimensions, Kc ≥ 1

π
; in in�nite dimensions, Kc = 2

π

Without forcing, Kc = 2

πg(0) = 4

π

Despite phase diversity, external forcing has brought the system
closer to order.
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Structured Coupling
Multiple Timescales

Structure ↔ Function

The interplay between connectivity and dynamics has been studied
in many contexts

Resilience to random breakdown: 1−pc = 〈k〉
〈k2〉−〈k〉

Analyzing structure via dynamics: PageRank

Master Stability Function: MSF : σ(A)→ {stable, not stable}

In synchronization, studies have focused on:

Cluster sizes for lattices in the limit N → ∞ [Strogatz and
Mirollo, 1988]

Existence & uniqueness of �xed points [Jadbabaie et al., 2004]

Paths to synchronization on di�erent topologies
[Gómez-Gardenes et al., 2007]

Correlations, e.g. assortativity [Restrepo and Ott, 2014]

J. Snyder Coupled Entrainment
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Proposed Work

Questions:

Given coupling topology, what is the change in stability of
decoherence upon driving?

Is it possible to tune the trade-o� between driving and
coupling by adjusting coupling topology?

Approaches:

Numerical simulation

Linear Stability Analysis

Mean-�eld Approximation

J. Snyder Coupled Entrainment
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Subharmonic Entrainment

It is well known that oscillators can behave coherently without
attaining the same frequency. Examples include:

4-5 day rodent estrous cycle locking to night-day cycle
[Winfree, 2001]

2:1 phase locking of body temperature and sleep-wake cycle
when deprived of external time cues [Ascho� and Wever, 1981]

Subharmonic locking of a sensory neuron to periodic inhibitory
input [Perkel et al., 1964]

Subharmonic entrainment of a single oscillator is well described
mathematically (in, e.g., [Zlotnik and Li, 2014]). However, coupling
of di�erent subharmonically forced oscillators is not well
understood.

J. Snyder Coupled Entrainment
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Proposed Work

Questions:

Can common driving selectively help or hinder mutual N : M
entrainment?

Can coupling across timescales improve coherence within
timescales?

Approaches:

Numerical simulation

Bifurcation analysis

Pie-in-the-sky scienti�c question... Is the seven-day week adaptive?
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Phase Reduction

Start with a forced, nonlinear oscillator with stable limit cycle γ :

ẋ = f (x ;u), γ̇ = f (γ;0), γ(t +T ) = γ(t)

De�ne phase ψ = Ψ(x) by Ψ(γ(t)) = 2πt
T , and extend Ψ to the

basin of γ the right way:

Nakao

Without forcing (u = 0):

ψ̇ = ω, ω = 2π/T
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Forcing and Coupling

Assuming that oscillators respond to forces according to Z (ψ),
exert forces according to P(ψ), and are all subject to the same
force u = v(Ωt),

ψ̇i = ωi +Z (ψi )v(Ωt) +
K

N

N

∑
j=1

Z (ψi )P(ψj)

Changing coordinates, ψ = φ + Ωt, and averaging over Ωt ∈ [0,2π):

ϕ̇i = ∆ωi + Λv (ϕi ) +
K

N

N

∑
j=1

G (ϕj −ϕi )

J. Snyder Coupled Entrainment
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Forcing and Coupling

Assuming that oscillators respond to forces according to Z (ψ),
exert forces according to P(ψ), and are all subject to the same
force u = v(Ωt),

ψ̇i = ωi +Z (ψi )v(Ωt) +
K

N

N

∑
j=1

Z (ψi )P(ψj)

Changing coordinates, ψ = φ + Ωt, and averaging over Ωt ∈ [0,2π):

ϕ̇i = ∆ωi + Λv (ϕi ) +
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�Separate but Comparable�

Separation of timescales underlies much analysis:

Center manifold reduction

Model fast degrees of freedom as stationary noise: replace
high-dimensional ODE by low-dimensional SDE

J. Snyder Coupled Entrainment
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