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Motivation

The whole is greater than the sum of the parts

Deconstruct causation between individuals in a composite system
Example systems/phenomena:

Crowd/flocking behavior

Pattern formation on networks

The brain

°
°

@ Boolean networks

°

o Multi-layer networks
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Model class: time-sequence of random vectors

X= (X1

]
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Setting

Model class: time-sequence of random vectors
— t\teZ
X = (Xi )ieZ

Why this model class?

@ Information theory is the state of the art for quantifying
complexity, and IT needs probability distributions

o Still reasonably general - free choice of Z (should be finite)
and meaning of RV's (should also be drawn from a finite

alphabet A)
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A Assumptions A

o Markov: p(XH1|X=t) = p(XtF1|X?t) - allows to consider only

two time steps at once
e Stationary: p(X':2) = p(X(t1+s): (2+9)) for all s € Z - allows

to average over time
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A Assumptions A

o Markov: p(XH1|X=t) = p(XtF1|X?t) - allows to consider only

two time steps at once
e Stationary: p(X':2) = p(X(t1+s): (2+9)) for all s € Z - allows

to average over time

= Upshot: p(Xt,X1) encodes everything!
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Possible Applications

e X! is the opinion of a randomly chosen agent about topic / at
time t

e X! is the state (compromised/recovered) of a randomly chosen
location with respect to the ith infrastructure type

e X! is the output of node i of a Boolean network at time t
given a randomly chosen initial condition

@ (current context) X! is the state of a randomly chosen dyad
on the it" layer of a relational network at observation time t
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Possible Applications

e X! is the opinion of a randomly chosen agent about topic / at
time t

e X! is the state (compromised/recovered) of a randomly chosen
location with respect to the ith infrastructure type

e X! is the output of node i of a Boolean network at time t
given a randomly chosen initial condition

@ (current context) X! is the state of a randomly chosen dyad
on the it" layer of a relational network at observation time t

A\ “randomly chosen” ... 7
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Entropy and Conditional Entropy

The entropy of a random variable X, denoted H(X), measures the
average uncertainty in the value of X. Mathematically,

— Y p(X = x)logy(p(X = x))

xeA

Conditional entropy H(X|Y) says: given Y, how much uncertainty
remains about X7
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Information Venn Diagram

H(X) H(Y)

H(X,Y)
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Kullback-Leibler Divergence

A (non-symmetric) information-theoretic measure of difference
between two probability distributions. Mathematically,

Dku(pllq) ZP |0g2<q§3)

Heuristically, if p is reality and q is a model, Dy (p||g) measures
how much complexity is missed by the model.
Properties:

e Dki(pllg) >0, and Dk (pllg) =0 if and only if p=gq

e Given p, the function 7(q) = Dki(pl|q) is convex (strictly
convex if p(z) > 0 for all z)
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Previous Work

Measures that aim to quantify causal influences using conditional
entropy:

o Transfer Entropy

TE; ;= H(XTHXE) — H(XH XY
e Mutual Information

[(XE XY = H(XTFL) — H(XTH | XE)
@ Stochastic Interaction

SI(Xt;XtJrl) — Z H(Xit-‘rl |Xit) _ H(xt+1 |Xt)
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Unified Perspective

These measures (and more) can all be expressed as
in D
min D (pll4)
for appropriate choice of null model class M. They are:
o Transfer Entropy
My = {a(XF, X q(XHHXT) = q(XfHHXE))}
e Mutual Information
= {q(X*, X 1)|g(X*, X) = g(X")g(X )}

@ Stochastic Interaction

Ms_{q(xt Xt+1)’q Xt+1|X Hq Xt+1|X
i=1

J. Snyder Integrated Information



Definition Information Theory

Geometric View

Visualizing Minimization

p(X,Y)

mtl?in Dk, (pllq)

FIG. 1. Information geometric picture for minimizing the KL
divergence between the full model p(X,Y) and disconnected
model g(X,Y).
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Some Minimizers have Closed Form

e Transfer Entropy (i — j)
g (X)) =p(X), " (XX = p(X{THIXE)
(Xt+1‘Xt Xt+1) (Xt+1‘Xt Xt-l—l)

e Mutual Information
q*(Xt,XH_l) — p(Xt)p(XH—l)
@ Stochastic Interaction

q*(Xt,XH_l) — P(Xt)HP(Xit+1|X,'t)
i
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. and some do not

We define (geometric) integrated information as
b= min D
G BvVE kL(pllq)

where

Mg = {Q|Q(Xit+1‘xt) = Q(Xitﬂ‘xit)av"}
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. and some do not

We define (geometric) integrated information as
b= min D
G BvVE kL(pllq)

where
M = {Q|Q(Xit+1‘xt) = Q(Xitﬂ‘xit)av"}

Important feature:

0< dg < /(X5 X, since M; € Mg
In contrast, it is possible that S/(X*; Xt+1) > [(Xt; XtH)
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Visualizing Null Model Classes

Disconnected models: q(X,Y)

- (a) Mutual information 1b) Transferentmpy

n D (plla) G

Full model: p(X,Y)

-. The quantity

(c) Integrated information (d) Stochastic interaction Correspond|ng to each nu”

7 tme ] @ ® model measures the
importance of the missing
® @ arrows/lines

FIG. 2. Minimizing the KL divergence between the full and
the disconnected model (a)-(d) lead to various information
theoretic quantities; (a) Mutual information, (b) Transfer en-
tropy, (c) Integrated information, and (d) Stochastic inter-
action. Constraints imposed on the disconnected model are
graphically shown.
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Multiplex Networks

R

Layerv/ﬁ /.;1 y /‘:2 y

Observing each dyad through time gives a time series of vectors -
treat as a sample of X = (X/)
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The Multiplex Markov Chain

Our assumptions (A\) mean that
everything is captured by
transition probabilities from one
uVv } time step to the next

This creates a Markov Chain
Edge weights are of the form

Puv—Uv

puv—uv = p(X T =UV|Xt =uV)
Vijayaraghavan et al. 2015
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“The” Null Model

@ Layers change state
independently

® Vv @ Joint transition probabilities
are product of marginals
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Measuring the Difference

)
SIXE X)) = D (K8 | & N\
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Integrated Information

No explicit expression for the minimizer.
Solve the constrained optimization problem

in D
Jmin. ke(pllq)

In our case, Mg is an 11-dimensional subset of R®
Tools:

e Julia for Mathematical Programming (JuMP)
@ Interior Point Optimization package (Ipopt)
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Primate Data

Week-long snapshots of
grooming, aggression, and status
signaling.

Focus on aggression/status
interplay

Look for signatures of social
perturbation
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Response to Social Perturbation

o
+— Stochastic Interaction
e Integrated Information
Mutual Information
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