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Abstract

This is to record setup and progress on the dynamics and early warning
signs side of the mutualistic networks project

Part I

Introduction and Background
A mutualistic network is one in which there are two types or guilds of nodes,
with the nodes of each guild interacting with the nodes of the other guild in a
mutually beneficial way. An archetypal example is the case of plant species and
the animal species that pollinate them. Hence we will commonly use the labels
A and P to denote the two guilds, referring to animals and plants, respectively.
We will write NA and NP to denote the number of nodes (species) in each guild.

One can collect the information of who interacts with whom in the form of a
mutualistic matrix, which is a NP ×NA matrix whose (i, j)th entry indicates the
relationship between plant i and animal j. There has been extensive study of the
structural properties of a mutualistic network that can be read off of this matrix,
such as nestedness [AP93, BJMO03] and modularity [New06, OBDJ07, Bar07].

Modularity is a measurement of the extent to which the links in a network
are confined to modules. A typical definition of modularity is of the form

Q(σ) =
1

Qnorm

∑
i,j

(Aij − 〈Aij〉)δ(σi, σj) (1)

where σ is a vector defining the partition (i.e. σi is the label of the module
to which node i belongs), Qnorm is a normalization constant ensuring Q ≤ 1,
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and 〈Aij〉 is the expected link weight between nodes i and j under a suitable
null model. A typical choice is 〈Aij〉 = kikj/2m, where ki is the degree of
node i and m = sumki is the total number of links. This choice, however, is
not appropriate for a bipartite network since it does not respect the constraint
that links are always between-guild and never among-guild. The appropriate
formulation for bipartite networks was introduced by Barber [Bar07].

Nestedness is a property of a bipartite network that was introduced by Atmar
and Patterson in 1993 [AP93]. Their original study system was an ecosystem
of separate islands, each inhabited by some collection of species. The bipartite
network in this case consists of species in one guild, and islands in the other,
with links indicating a given species living on a given island. The fundamental
observation of Atmar and Patterson was that the islands inhabited by the rarest
species were also inhabited by the more common species; and conversely, that
the most sparsely-populated islands contained species that also lived on most
or all of the other islands. In network language, the set of neighbors of any
given low-degree node is contained within the set of neighbors of any given
higher-degree node. It is this ”nesting” of neighbor sets that gives us the name
”nestedness”. Several formulas have been given in attempts to quantify this
property, for instance by counting the extent to which neighbor-overlap occurs
(NODF) [ANGLU08], or by measuring to what extend nonzero entries in the
adjacency matrix are clustered near the top-left corner when columns and rows
are sorted by degree (NTC) [AP93].

There has been extensive study of the modularity and nestedness of mutu-
alistic networks. It has been reported that many real mutualistic networks are
significantly nested [BJMO03]. The same networks have also been shown to be
significantly modular [OBDJ07]. Further work has investigated the origins of
these network properties [BFPG+09, SRTU09, PHM17].

Our goal will be to study the interplay of the structural properties of the
mutualistic networks with dynamics unfolding on them. Therefore we begin
by measuring some structural properties of interest for the various Web of Life
networks. To do this we use the BiMat software for MATLAB, written by
César Flores, Timotheé Poisot, Sergi Valverde, and Joshua Weitz https://

bimat.github.io/.
[ Insert here a summary of the metastatistics analysis. ]

1 Dynamics on Mutualistic Networks

We mention specifically the work of Dakos and Bascompte [DB14], who in-
vestigated the relationship between the mutualistic network structure and the
warning signs associated with ecosystem collapse. To do this, the authors stud-
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ied a toy model of population dynamics, having the form

dPi = Pi

αPi − NP∑
j=1

βPijPj +

∑NA

k=1 γ
P
ikAk

1 + h
∑NA

k=1 γ
P
ikAk

dt+ σPidW
P
i,t

dAk = Ak

(
αAk −

NA∑
l=1

βAklAl +

∑NP

i=1 γ
A
kiPi

1 + h
∑NP

i=1 γ
A
kiPi

)
dt+ σAkdWA

k,t

(2)

where Pi denotes the abundance of plant species i, Ak the abundance of ani-
mal species k; αA, αP are vectors of intrinsic growth/death rates; βA, βP are
matrices of intra-guild competition coefficients; γA, γP are mutualistic matri-
ces; h is a constant known as the handling time, and controls the saturation of
the mutualistic term; σ is noise strength; and WA,WP are vectors of standard
Brownian motions with independent components.

Given various parameter settings, the authors of [DB14] stress the ecosystem
by slowly decreasing the magnitude of the mutualistic coefficients γ, in such a
way that total extinction is inevitable. Along the way, it is possible to measure
variability in population levels. General considerations imply that one can ex-
pect so-called critical slowing down in a dynamical system which is brought near
a tipping point [SBB+09]. Among these are rising variance and autocorrelation
in the dynamics.

Indeed, it is found that the coefficient of variation (defined as the standard
deviation divided by the mean) and the lag-1 autocorrelation are both signif-
icantly larger when the system is close (in terms of the magnitude of γ) to
extinction than when it is far away. These statements hold when the statistical
quantities are measured either for the time series of an individual species, or
the time series of total ecosystem biomass.

The authors go on to connect the performance of these indicators at the
species level to species properties that derive from network position - degree,
and contribution to nestedness.

Notice that the early warning indicators just described do not directly illu-
minate anything about the mechanism of ecosystem collapse; they only serve
to indicate its proximity. We aim to extend the work of [DB14] by examining
pairwise correlations among the biomasses of the various species, with a goal of
extracting some narrative understanding of how the ecosystem collapse unfolds.

2 Previous work

Here we give background and context for work on the structure of and dynamics
on mutualistic networks

• Carlos Gracia-Lázaro, Laura Hernández, Javier Borge-Holthoefer, and Yamir
Moreno. The joint influence of competition and mutualism on the biodi-
versity of mutualistic ecosystems. pages 1–11, mar 2017
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– This work studies a population dynamics model that includes both
intra-guild competition and inter-guild mutualism. In contrast with
previous work, they do not take competition coefficients to be either
uniform or randomly distributed, but rather to be related to co-
exploitation. That is, species that use the same resources (i.e. other-
guild mutualistic partners) are in competition.

– The conclusion is that when competition is structured in the way
described above, there is a nontrivial dependence of biodiversity on
the competitive and mutualistic strength together. Here biodiversity
is taken to be the number of species with nonzero population in the
steady state.

– This work studies the location of the steady state as a function of
network structure / parameters, as opposed to studying the steady
state’s stability.

• Jacopo Grilli, Tim Rogers, and Stefano Allesina. Modularity and stability
in ecological communities. Nature Communications, 7(May):1–10, 2016

– This paper is one of many in the field that formulates a problem
in the framework of ”generalized modeling”. That is, they pose a
stability question as a question about the spectrum of a Jacobian
matrix. But, rather than actually integrate dynamical equations to
find a fixed point at which to compute the Jacobian, they simply posit
the form that such a Jacobian must take, and study its properties as
a function of various parameter settings determining its entries.

Specifically, the authors consider an underlying random (symmetric)
matrix of interaction coefficients, and study the influence of modular-
ity by multiplying this matrix elementwise with the adjacency matrix
of a network with a prescribed value of modularity. Hence the rele-
vant parameters are (anti-)modularity, and the mean and variance of
interaction coefficients. The authors find that in some cases modu-
larity can have a moderately stabilizing effect, while anti-modularity
can have a strongly destabilizing effect

– The network models considered here are ones with a homogeneous
degree distribution

• Paolo Barucca. Localization in covariance matrices of coupled heteroge-
nous Ornstein-Uhlenbeck processes. Physical Review E - Statistical, Non-
linear, and Soft Matter Physics, 90(6):1–5, 2014

– This work gives general considerations about the properties of the
eigenvectors of the covariance matrix that arises from a multivari-
ate Ornstein-Uhlenbeck (OU) process. An OU process is simply the
name for a linear, time-invariant dynamical system driven by noise,
for instance Equation 3.
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– The case where the dynamic matrix is diagonal is trivial; the covari-
ance matrix is also diagonal. In this case, the eigenvectors of the
covariance matrix are simply the unit vectors; in particular, they are
perfectly localized.

– The author considers a small, symmetric perturbation of a diago-
nal dynamic matrix, as well as heterogeneous ”temperatures” (i.e.
squares of noise magnitudes). He then numerically evaluates mea-
sures of eigenvector localization as a function of off-diagonal terms
and temperatures.

– Again, this work considers an ensemble of matrices with homogeneous
expected degrees.

• Samir Suweis and Paolo D’Odorico. Early warning signs in social-ecological
networks. PLoS ONE, 9(7), 2014

– This work proposes a generic measure of critical slowing down, namely
the maximum element of the covariance matrix. The authors demon-
strate the relationship between this quantity and the real part of the
maximum eigenvalue of the Jacobian (one reasonably proxy for ”in-
stability”). They find that this relationship depends on the archi-
tecture (i.e. mutualistic (++), antagonistic (–) or parasitic (+-)),
the connectance, the degree distribution, and the variance in link
strengths.

– The authors mention the Lyapunov equation as the key relation be-
tween the Jacobian and the covariance matrix, and from there per-
form mainly computational studies. They do include some calcula-
tions for the 2× 2 case, and some more stuff in the SI.

Part II

Analytical Tools

3 Linearization

Here we do some mathematical analysis that will enable us to interpret the
information obtained by measuring correlations between species’ abundances.
The following mathematical results are not new can be found in, e.g. [Gar96].
What we offer here is a particular interpretation of the result.

In particular, we will calculate the stationary distribution of a stochastic
process on a network. To each node i ∈ {1, . . . , N} we associate a scalar (ran-
dom) quantity Xi, which is driven linearly to zero and excited linearly by its
neighbors, and subject to external noise. Hence we take a model of the form

dXi = (−riXi + (AX)i) dt+ σidWi,t (3)
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where ri indicates the intrinsic stability of Xi; (AX)i :=
∑
j AijXj with A the

adjacency matrix of a graph (which we take to be undirected and without self-
loops); σi is the strength of noise applied to node i and {Wi} are independent
standard Brownian motions.

If we denote by p(x, t) the probability density function for X at time t, then
p evolves according to a Fokker-Planck equation

∂p

∂t
=

N∑
i=1

− ∂

∂xi

−rixi +

N∑
j=1

Aijxj

 p(x, t)

+
1

2
σ2
i

∂2

∂x2
i

p(x, t). (4)

We can simplify (Equation 4) by distributing the first partial derivative, and
get

∂p

∂t
=

N∑
i=1

p(x, t)ri −
∂p

∂xi

−rixi +

N∑
j=1

Aijxj

 p(x, t) +
1

2
σ2
i

∂2

∂x2
i

p(x, t) (5)

Assuming a stationary solution, p(x, t) = p0(x) for all t, we get ∂p
∂t = 0,

hence

N∑
i=1

σ2
i

2

∂2p0

∂x2
i

(x) =

N∑
i=1

−p0(x)ri +
∂p0

∂xi

−rixi +

N∑
j=1

Aijxj

 . (6)

Clearly, this equation is true if it is true term-by-term. Therefore we seek a
function p0(x) satisfying

σ2
i

2

∂2p0

∂x2
i

(x) = −p0(x)ri +
∂p0

∂xi

−rixi +

N∑
j=1

Aijxj

 , ∀i (7)

To find a solution to this equation, we suppose that there is a solution which
is a multivariate normal distribution. That is, we suppose that there exists
µ ∈ RN (the mean) and a symmetric, positive definite matrix Σ ∈ RN×N (the
covariance matrix ), such that

p0(x) =
1√

(2π)N det(Σ)
exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
. (8)

Here the elements of the matrix Σ are exactly the covariances of the components
of X:

Σij = 〈(Xi − 〈Xi〉)(Xj − 〈Xj〉)〉 (9)

Since the equations (Equation 7) are linear, we ignore the normalization
factor and seek a solution p0(x) = exp(− 1

2 (x−µ)TΣ−1(x−µ)). For convenience
we will denote the entries of the matrix Σ−1 by (sij), and note

(x− µ)TΣ−1(x− µ) =
∑
j,k

(xj − µj)sjk(xk − µk). (10)
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Moreover, Σ−1 will be symmetric because Σ is symmetric. This fact will be
used in simplifying the following equations.

First, we calculate all the relevant derivatives of p0. We have

∂p0

∂xi
= exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)(
−1

2

) N∑
j=1

2sij(xj − µj)


= −p0(x)

 N∑
j=1

sij(xj − µj)

 . (11)

and then

∂2p0

∂x2
i

= −∂p0

∂xi

 N∑
j=1

sij(xj − µj)

− p0(x)sii

= p0(x)


 N∑
j=1

sij(xj − µj)

2

− sii

 (12)

We can now insert the partial derivative expressions into (Equation 7). Drop-
ping a common factor of p0(x), we get

σ2
i

2


 N∑
j=1

sij(xj − µj)

2

− sii

 = −ri −

 N∑
j=1

sij(xj − µj)

−rixi +

N∑
j=1

Aijxj

 .

(13)

To solve for µ and Σ−1 in terms of r and A, we compute the coefficients of the
xjxk terms on either side of the equation and equate them.

Equating constant terms gives

− σ2
i

2
sii = −ri =⇒ sii =

2ri
σ2
i

. (14)

Equating coefficients of xi gives

σ2
i

2

[
−2s2

iiµi
]

= −siiµiri

−2riµi = −µiri
=⇒ µi = 0. (15)

Hence, we omit writing µ in all further calculations.
Next we consider the terms involving xixj . However, it will turn out that

we cannot, in general, choose (sij) to be symmetric and such that the xixj term
vanishes in every individual equation in Equation 7 (in particular, this fails
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when the noise strengths are not identical, σi 6= σj). Hope is not lost, however,
because in the full equation (Equation 6), both the ith and the jth component
equations contribute an xixj term. Adding both equations together will let us
compute the coefficients of xixj in the full Equation 6. When we do this, we
get

sij
(
siiσ

2
i + sjjσ

2
j

)
= sij (ri + rj) +Aij(sii + sjj) (16)

where we have used both that sij = sji and that Aij = Aji. Further simplifica-
tion, including using our result for sii, yields

sij = −Aij
2σ2

j ri + 2σ2
i rj

σ2
i σ

2
j (ri + rj)

(17)

In the case that σi = σj = σ, this expression simplifies substantially:

sij =
−2Aij
σ2

(18)

which allows us to express the entire matrix as

Σ−1 =
2

σ2
(diag(r)−A) (19)

where diag(r) denotes the diagonal matrix whose nonzero entries are given by
the vector r.

If, moreover, ri = r for all i, then we can actually recover the covariance
matrix in an interpretable closed form. In this case, we have

Σ−1 =
2

σ2
(rI−A)

Σ =
σ2

2
(rI−A)−1

=
σ2

2r

∞∑
k=0

(
A

r

)k
(20)

which is the Neumann series for the resolvent of a matrix. Clearly, this ex-
pression only converges when r is larger, in absolute value, than the largest
eigenvalue of A. In view of the dynamics, Equation 3, this is precisely the con-
dition that guarantees that x = 0 is a stable fixed point of the deterministic
dynamics. If this condition is violated, then certainly there is no stationary
density that is multivariate normal about zero.

Finally, we can glean some insight from this form of Σ. It is not hard to
show that the (i, j)th entry of Ak is a sum over paths from node i to node j of
the product of edge weights along the path. If Aij ∈ {0, 1}, then the product
along any path is just 1, and (Ak)ij simply counts the paths.

So, Equation 20 suggests and interpretation of covariance as a quantity that
is transmitted by links and damped by nodes. We can conclude, as we might
have guessed, that pairs of nodes between which there are many short paths will
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co-vary strongly, while nodes connected by only a few long paths will be closer
to independent.

Finally, we point out that there is a general, closed-form formula for Σ in
terms of the dynamical matrix A and the noise matrix B. Noting that the
stationary solution is

X =

∞∫
0

exp(tA)BdWt (21)

we obtain [Gar96]

Σ = 〈XXT 〉 =

∞∫
0

exp(tA)BBT exp(tAT )dt (22)

If we assume that A can be (not necessarily orthogonally) diagonalized, then
we can write A = V ΛV −1, where V is the matrix whose columns are eigenvectors
of A, and Λ is the matrix with the eigenvalues of A on the diagonal. Inserting
this form into Equation 22 yields

Σ = V

 ∞∫
0

eΛtV −1BBTV eΛtdt

V −1. (23)

We can interpret Equation 23 in the following way: the term in square
brackets is the matrix of Σ expressed in the V basis. Conversely, the term
V −1BBTV is the matrix of BBT in the canonical basis, if the BBT is considered
to be expressed in the eigenbasis V . This is horribly confusingly stated, and
I’m fairly sorry. Not too sorry, just a little bit.

3.1 Non-normality

Unfortunately, much of the above discussion is not terribly applicable due to the
severity of the assumption that the matrix defining the dynamics is normal. A
sufficient condition for normality is symmetry - in network language, this means
that the underlying graph is undirected. Generically, a directed graph will have
a non-normal adjacency matrix. This can lead to some surprising results, as we
now demonstrate.

Perhaps the simplest example of a non-normal matrix is the 2 × 2 Jordan
block:

A =

[
1 1
0 1

]
(24)

We now consider the SDE dX = −AXdt+σIdW (t). In components, this is

dx1 = −(x1 + x2)dt+ σdW1(t) (25)

dx2 = −x2dt+ σdW2(t) (26)

10



Clearly, the deterministic part of the dynamics (dX/dt = −AX) has a unique
fixed point at the origin, and this fixed point is stable since all singular values
of −A have negative real part.

The covariance matrix Σ in the stationary state satisfies the equation [Gar96]

AΣ + ΣAT = σ2I (27)

We can simply solve by hand for the components of Σ and get

Σ = σ2

[
3/4 −1/4
−1/4 1/2

]
(28)

4 Linearizing our particular dynamics

Here we record the calculation of the Jacobian of the (deterministic part of the)
dynamics Equation 2.

Since there are two guilds, we need to compute terms of four types: ∂Ṗi/∂Pj ,

∂Ṗi/∂Ak, ∂Ȧk/∂Pi, and ∂Ȧk/∂Al. With deepest apologies to the Gods of
indexing conventions, we have

∂Ṗi
∂Pm

= (1− δim)
[
−βPimPi

]
+ δim

αPi − NP∑
j=1

βPijPj +

∑NA

k=1 γ
P
ikAk

1 + h
∑NA

k=1 γ
P
ikAk

− βPiiPi


(29)

∂Ȧk
∂An

= (1− δkn)
[
−βAknAk

]
+ δkn

[
αAk −

NA∑
l=1

βAklAl +

∑NP

j=1 γ
A
kjPj

1 + h
∑NP

j=1 γ
A
kjPj

− βAkkAk

]
(30)

∂Ṗi
∂Al

=
Pi(

1 + h
∑NA

k=1 γ
P
ikAk

)2 γ
P
il (31)

∂Ȧk
∂Pj

=
Ak(

1 + h
∑NP

i=1 γ
A
kiPi

)2 γ
A
kj (32)

Notice that, sadly, the Jacobian matrix is not symmetric: ∂Ṗ /∂A 6= (∂Ȧ/∂P )T .
Moreover, we should not expect the Jacobian to be normal (i.e. to commute with
its transpose), and so the arguments in section 3 should be carefully modified.

In the end we will use this Jacobian to evaluate stability of a fixed point,
and to compute and interpret covariances between variables in the vicinity of a
fixed point.

Using this Jacobian, we can plug it into Equation 22 to see what analytical
relationship we can derive between the mutualistic interaction matrix and the
covariance matrix. First, some assumptions. We assume that all growth rates
are equal (αi = α∀i); that δ = 1, that is, mutualistic interaction strength is
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inversely proportional to in-degree; and that inter-species competition βGij =

N−1
G for G ∈ {A,P}, i 6= j while intra-species competition is unity. These

assumptions taken together imply that for certain parameter ranges, there exists
a fixed point solution in which all abundances are equal and have value x ∈ R.
In this case, the noise matrix is B = σxI. Then Equation 22 becomes

Σ = σx

∞∫
0

eJteJ
T tdt (33)

If it were the case that JJT = JTJ , then it would hold that exp(Jt) exp(JT t) =
exp((J +JT )t), and we could write a closed-form expression for Σ, which would
agree with Equation 20. Without this assumption, however, we must turn to
other methods to understand the integral.

Integration by parts applies; we get

Σ = σx

J−1eJteJ
T t|∞0 −

∞∫
0

J−1eJtJT eJ
T tdt

 (34)

= σx

−J−1 −
∞∫

0

J−1eJtJT eJ
T tdt

 (35)

We can keep integrating by parts, generating a series of powers of J−1 with
alternating signs, but there is no guarantee that this series will converge.

5 Functional Network Inference and Commu-
nity Detection

Here we discuss general aspects of the problem of inferring an effective inter-
action structure (i.e. a functional network) from multiple time series. This
problem has been studied extensively, largely in the context of economics and
neuroscience.

To narrow the scope somewhat, note that it is reasonable to expect that our
system of study, Equation 2, will be near a stable equilibrium point, and that a
linear approximation will be appropriate. As shown in section 3, this means that
the dependencies between variables will be entirely captured by covariance - that
is, there will be no (or rather, insignificant) nonlinear dependencies. For this
reason, we restrict our attention to analysis of covariance (and/or correlation)
matrices.

It is tempting to simply compute a correlation matrix, interpret its entries as
weighted edges of a network, and apply an out-of-the-box community detection
algorithm to infer functional communities. However, this approach shows a bias
- in particular, it will systematically under-detect large communities [MG13].
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An approach that has been used in the field of ”econophysics” is based on
spectral analysis of correlation matrices and random matrix theory. Briefly, the
method works as follows (adapted from [MG13]):

Let C ∈ [−1, 1]N×N be an empirical correlation matrix, that is, a matrix of
correlations computed from L samples of N random variables. Our goal will be
to extract features of C that differ from what would be expected by chance, i.e.
what is expected under an appropriate null model. Here the null model is the
model in which all N random variables are, in fact, uncorrelated, and so any
nonzero off-diagonal entries in C would be due to finite sample effects.

We should then specify how to compare our empirical C to the null model.
This comparison should respect the overall structure of the matrix, not just the
magnitudes of its various entries. This indicates that we should use a spectral
decomposition. And indeed, the expectation of the null model is given in a
very precise form by results of random matrix theory (RMT). In particular,
the eigenvalues of a correlation matrix computed from L samples of each of
N uncorrelated random variables will be distributed according the Marcenko-
Pastur density ρ(λ) given by

ρ(λ) =
L

N

√
(λ− λ−)(λ+ − λ)

2πλ
if λ− ≤ λ ≤ λ+ (36)

where

λ± =

[
1±

√
N

L

]2

(37)

Since C is symmetric, it can be diagonalized: C =
∑
λ∈σ(C) λPλ, where all

λ are real eigenvalues and Pλ is the projector onto the eigenspace corresponding
to eigenvalue λ. The RMT result then gives a natural distinction between
eigenvalues that we could expect by finite-sample effects and eigenvalues that
reflect some non-trivial relationship among the variables.

In econophysics, it is typical to break C up into three pieces, C = C(r) +
C(g) + C(m), corresponding to ”random”, ”group”, and ”market” modes, re-
spectively. These pieces are defined as

C(r) =
∑
λ≤λ+

λPλ (38)

C(g) =
∑

λ+<λ<λm

λPλ (39)

C(m) = λmPλm
(40)

where λm denotes the largest eigenvalue of C. The typical interpretation is
that C(m) reflects any global correlations among the N variables, while C(g)

represents correlations among some, but not all, of the variables. One can also
group these two together as a ”structured” component, C(s) = C(g) + C(m).

The authors of [MG13] go on to propose three candidate definitions of mod-
ularity, based on the above considerations, to use as a basis for community
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detection in correlation matrices. A general modularity function has the form

Q(~σ) =
1

Anorm

N∑
i=1

(Aij − 〈Aij〉) δ(σi, σj) (41)

where 〈Aij〉 is an expected value of matrix entry Aij under some null model and
Anorm is a normalization constant.

In consideration of the RMT results above, [MG13] proposes either

(i) 〈Cij〉(1) = δij

(ii) 〈Cij〉(2) = C
(r)
ij

(iii) 〈Cij〉(3) = C
(r)
ij + C

(m)
ij

Inserting any of these three expressions in the definition for modularity gives a
quality function that can be maximized by an algorithm of one’s choosing.

Part III

Simulations and Analysis
Here we describe the computational studies we have performed of the system
(Equation 2).

6 Parameter Setting

Here we describe the procedures for choosing parameter values - particularly
γA, γP , βA, βP . Following [DB14], we generate the mutualistic matrices γ from
empirical data collated in the Web of Life database (http://www.web-of-life.
es). This database contains data from several different ecosystems. For each
ecosystem, the data is presented as a matrix with rows indexed by plant species
and columns indexed by pollinator species. The matrix entries (either binary
or weighted) indicate the interactions between the corresponding species.

To generate a tunable family of mutualistic matrices, we take coefficient
values to be

γij = γ0
yij
kδi

(42)

where {yij} are the raw interaction values from the database, γ0 is an overall
scale factor, ki =

∑
j yij is the (weighted) in-degree of node i, and δ ∈ [0, 1]

is an exponent that quantifies a trade-off between generality and mutualistic
benefit. If δ = 0, then each mutualistic partner of species i confers the same
amount of benefit. If δ > 0, then the mutualistic benefit conferred by each
partner decreases as the total number of partners decreases. In the extreme
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case of δ = 1, we have
∑
j γij = γ0 for all i, so the total mutualistic benefit for

every species is the same.
For the competition coefficients, we set all βii = 1 and sample βij randomly

from a uniform distribution with minimum 0.001 and mean 1/n, where n is the
number of species in the respective guild (plants or animals). This is rather arbi-
trary and completely copied from [DB14]; we also consider the case of very small
(or zero) interspecific competition. As it turns out, the results are remarkably
different.

The intrinsic growth rates α are also chosen at random. In fact, ”growth
rate” is a somewhat misleading name, because they are chosen from a uniform
distribution on [−0.5,−0.1]. This is so that there can be no survival when
mutualistic strength γ0 is brought to zero, and we know that every simulation
of such a situation will result in total extinction.

7 Simulation

Following [DB14], we generate sample paths of the solution to Equation 2 using
an Euler-Maruyama scheme with a time step of δt = 0.01. In practice, we
record all species abundances in a single vector X = (PT , AT )T . In other
words, Xi = Pi for i ∈ 1 . . . NP , and Xi = Ai−NP

for i ∈ NP . . . NP +NA.

8 General Observations

Here we list some general observations about the behavior of Equation 2 as it
depends on the various parameter settings.

8.1 Degree Exponent δ

The parameter δ, as it appears in Equation 42, has a very strong effect on nature
of the dynamics, particularly in the approach to ecosystem collapse. The main
differences are displayed in Figure 1.

If δ = 1, then the sum of the incoming mutualistic coefficients to each species
is constant. This puts all species on roughly ”equal footing”, and so a global
decrease in mutualistic strength (i.e. a decrease in γ0) will affect all species in
a similar manner. This is the case until some species goes completely extinct,
at which point imbalances appear, and the subsequent dynamics towards total
extinction are much more erratic.

If, on the other hand, δ = 0, then each mutualistic interaction has the same
strength. In this way, generalist species (those with many mutualistic partners)
stand to benefit much more than specialists (those with few mutualistic part-
ners). This naturally creates a variation in terms of the response of the various
population levels to a global decrease in mutualistic strength.
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Figure 1: Effect of degree exponent δ. Data are species abundances generated
by slowly decreasing γ0 to zero.
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8.2 Competition coefficients β

The size and the heterogeneity of the competition coefficients {βAij , βPij} also has
a strong effect on the dynamics. A visual summary is given in Figure 2

To guide intuition, consider the extreme case of zero competition between
species. In this case, the only interactions between species are positive ones.
If the strength of these connections decreases, then so will the abundances of
all species. If one species goes extinct, then its mutualistic partners will be
impacted negatively, as will the partners of those partners, and so on. This
gives rise to a tendency for different species to go extinct together. If we also
have δ = 1, then this effect is especially pronounced, since in this case all species
have equal incoming mutualistic strengths.

If, however, there is significant competition among species, then one species
going extinct may represent a benefit for a competitor species! Indeed, we can
see this effect prominently in both parts of Figure 1, though more strongly in
the δ = 1 case.

9 Linearization

Based on intuition from the exactly-solvable two-species version of our model
(see [DB14] Supplementary Information), we expect species extinction to occur
as a saddle-node bifurcation, and therefore we expect the dominant eigenvalue
of the Jacobian to approach zero. Indeed, this is what we see, Figure 3.

We can go further than just the eigenvalue, and examine the corresponding
eigenvector(s). Since the Jacobian is not generally symmetric (or even normal),
the eigenvalue decomposition yields both left and right eigenvectors; that is,
there are matrices V,D,W such that D is the diagonal matrix of eigenvalues and
AV = DV and WTA = DWT , so that the columns of V are right eigenvectors
of A and the columns of W are left eigenvectors of A. We focus on the right
eigenvectors V since these correspond to directions such that a perturbation in
that direction will decay along that direction at a rate given by the appropriate
eigenvalue.

In the first extinction event in this experiment, the species numbered 36 and
177 go extinct together. We can see this fact reflected in the right eigenvector
corresponding to the eigenvalue which is closest to zero in the step immediately
before these two species go extinct, see Figure 4.

We wish to connect this localization phenomenon in the critical Jacobian
mode to properties of the covariance matrix. As stated before section 3, the
Jacobian J and covariance matrix Σ enjoy the relationship

− JΣ− ΣJT = BBT (43)

provided the system is well-approximated by local linearization, where B is the
matrix by which noise is injected. In this case, since we have multiplicative
noise, B is a diagonal matrix whose entries are (σXi), where σ ∈ R is the
overall noise strength and {Xi} are the species abundances.
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Figure 2: Extinction process in the absence of interspecies competition. Note
that abundances decrease monotonically to zero (up to small fluctuations due
to noise)
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Figure 3: The largest (real part of an) eigenvalue of the Jacobian as a function of
mutualistic strength. Mutualistic strength γ0 was decreased in 1000 equal-sized
steps from 8 to 0, and for each value of γ0 the dynamics were simulated until the
mean abundance of each species was reasonably stationary. The system state
used for calculation of the Jacobian matrix was the vector of mean abundances
for all species over the last (stationary) integration time period.
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Figure 4: The right eigenvector corresponding to the eigenvalue nearest to zero
immediately preceding the first extinction event. In this extinction event, species
36 and 177 go extinct; their entries in this eigenvector are clearly the largest, as
indicated by the arrows. In other words, the critical mode is concentrated on the
most vulnerable species, which aligns with our intuition from low-dimensional
saddle-node bifurcations.
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Figure 5: The leading (largest eigenvalue) eigenvector of the covariance matrix
immediately preceding the first extinction event, in which species 36 and 177 go
extinct. As for the leading Jacobian eigenvector, the two species that are about
to go extinct are those whose components in this vector are largest.

Intuitively, as the system approaches a tipping point, abundances remain
reasonably large, and the B matrix is roughly constant; in particular, it remains
full rank. However, J has an eigenvalue tending to zero, bringing it closer to
being rank-deficient. Therefore we expect that Σ will develop a mode with a
large eigenvalue so that Equation 43 remains satisfied. As we have seen, the
critical mode of the Jacobian displays readily interpretable information about
the impending extinction event; this also appears to be the case for the top
eigenvector of the covariance matrix, see Figure 5.

10 Statistics

We investigate several statistical quantities of interest from sampled trajectories
X(t). In what follows, angle brackets denote, in principle, statistical averages
- that is, averages over an ensemble of sample paths. In practice, however,
we assume that the process X is stationary and ergodic, meaning that we can
estimate these averages by averages over time. First, the coefficient of variation,
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defined as the standard deviation divided by the mean:

CVi =

√
〈(Xi − 〈Xi〉)2〉
〈Xi〉

. (44)

This quantity is an appropriate substitute for the standard deviation in the
present context because the system (2) is subject to multiplicative noise (i.e.
the noise strength is proportional to the abundance). We can also consider the
coefficient of variation at the community level, by replacing Xi by

∑
iXi in the

above definition.
Next, we consider the lagged correlations:

Cij(τ) =
〈(Xi(t+ τ)− 〈Xi〉) (Xj(t)− 〈Xj〉)〉

σiσj
(45)

where we caution that here σi and σj are the standard deviations of variables Xi

and Xj , respectively, rather than the noise strengths as written in (Equation 2).
The correlation Cij(τ) takes values in [−1, 1], and measures the degree to which
the value of Xj at time t predicts the value of Xi at time t+ τ .

The dependence of Cij(τ) on the lag τ can tell us about the nature of the
connection between species i and j. In particular, the diagonal terms Cii(τ) can
give a characteristic timescale for the autocorrelation of species i. Empirically
(see Figure 6), we find that each diagonal element depends nearly exponentially
on τ , that is

Cii(τ) ≈ exp(−τ/Ti) (46)

for some Ti, which gives a characteristic timescale for the fluctuations in the
abundance of species i.

10.1 Spectral Analysis

Here we perform some simple spectral analyses of correlation matrices obtained
along the course towards extinction. The discussion in section 5 suggests that
we may stand to learn a lot from simply studying the largest eigenvalue of the
covariance (and/or correlation) matrix.

Indeed, the spectrum of the correlation matrix is highly sensitive to the dy-
namics. For example, see Figure 7. This figure was obtained by integrating
the dynamics to steady state and calculating the matrix of correlations between
species abundances, then changing the overall mutualistic strength and repeat-
ing the process. Given these matrices, we computed all eigenvalues (of which
there are N = 185, equal to the total number of species), and plotted a his-
togram of their values. This histogram can then be compared to the distribution
one would expect from measuring a matrix of correlations between uncorrelated
random variables, the Marcenko-Pastur distribution.

The first pane of the figure is taken at γ0 = 8, which is quite far from
any extinction event. Note that the distribution of eigenvalues is somewhat
wide, but its width is still within an order of magnitude of the width of the
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Figure 6: Log-linear plot of single-species autocorrelation curves. Notice each
curve is nearly linear, indicating a nearly exponential decay of autocorrelation.
The inverse of the slope gives a natural timescale for fluctuations of each species.
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Marcenko-Pastur distribution, shown in green. The second pane, however, is
taken at γ0 = 4, which is much closer to an extinction event. We see in this
case that while many eigenvalues are still on the order of the level expected at
random, the top eigenvalue is much larger.

NOTE: These statistics were computed improperly. That is, it
was not checked whether or not the dynamics had reached a steady
state before calculating correlations. The upshot is that any pair of
species that went extinct in the same time window are perceived to
be (artificially) highly correlated, since they both exhibit a strong
downward trend in abundance.

Given this observation, as well as the computation in section 3, we may
expect the correlation matrix to show a very large largest eigenvalue preceding
extinction events. Indeed, the calculation in section 3 shows that, in a certain
special case, the covariance matrix is inverse to the Jacobian matrix. If an
eigenvalue of the Jacobian matrix approaches zero, as one might expect in the
vicinity of a saddle-node bifurcation, then the covariance matrix will show a
corresponding divergent eigenvalue.

We can test this prediction computationally; at each value of γ0 along the
way from high (8) to low (0), we compute the top eigenvalue of both the cor-
relation matrix and the covariance matrix, and plot them as a function of γ0.
We also place vertical lines at the values of γ0 at which extinction events were
observed. The results are shown in Figure 8.

As we can see in Figure 8, there are subtle differences between the top
eigenvalue of the correlation matrix versus the covariance matrix. Since the
correlation matrix is obtained by dividing the covariance matrix by the appro-
priate standard deviations, the correlation matrix is sensitive to small value of
standard deviations. Note that once a species goes extinct, its standard devia-
tion (as well as its covariance with other species) drops to zero, so the rows and
columns corresponding to extinct species in the correlation matrix are subject
to numerical error to a greater extent than the same rows and columns in the
covariance matrix.

10.2 Correlations and Community Structure

Here we report observations of the structure of the correlation matrix as it
relates to the structure of the mutualistic network γ.

The intuition is that if the mutualistic network is modular (which is the case
for some, but not all, of the data sets in the Web of Life), then nodes in the
same module should be more highly correlated than nodes in different modules.

To validate this intuition, we measure the correlation matrices as described
above, and sort their rows and columns according to a modularity-maximizing
partition of the structural network. An example of such a matrix is visualized
in Figure 9.

We can go further and watch the evolution of this steady-state correlation
matrix as the mutualistic strength γ0 is decreased down to zero. As we expect,
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Figure 7: Distribution of eigenvalues of the correlation matrix computed for
species abundances around steady state far from the tipping point (top) and
close to the tipping point (bottom). In both figures, the green curve is the
density of the appropriate Marcenko-Pastur distribution, which gives the ex-
pected behavior under the assumption of no actual correlation. Note that the
horizontal axes have different scales.
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Figure 8: Top eigenvalue of each of the correlation matrix and covariance matrix,
computed in steady state, as a function of mutualistic strength. Vertical red
lines indicate extinction events.
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Figure 9: A (equal-time) correlation matrix of species abundances, immediately
preceding the first extinction event. Values are indicated by shade, with black
representing -1 and white representing +1. Rows and columns are sorted ac-
cording to a partition of the mutualistic network into M = 9 modules. Visually,
there appears to be a block-like structure; that is, correlation appears to respect
the modularity of the mutualistic network.
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Figure 10: Boxplot of covariance values at different network distances, both
near to and far from the tipping point. Each pair of nodes is a data point. Box
shows upper and lower quartiles, red line is the median, and whiskers extend
to extreme values. Note: overall decrease of covariance with network distance,
though decay of covariance with distance appears slower when the system is
near the tipping point than when the system is far from the tipping point.

we see increased correlation prior to extinction among sets of species that go
extinct in the same step of γ0.

11 Covariance vs. Topology

Here we discuss observations of the relationship between the covariance between
any given pair of species i and j, and the relative positions of these species in
the network.

One simple prediction one might make is that species that share a direct
connection in the network tend to covary more strongly than those that do not.
In general, one might expect that the covariance bewteen two species tends
to decrease as the network distance (i.e. length of the shortest path between
them) increases. Indeed, this is broadly what we find, see Figure 10. Note that
when the system is near its tipping point, it appears that covariance between
nodes persists over longer network distances than when the system is far from
its tipping point.

Next we look in more detail at how the dependence of covariance on network
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Figure 11: Histograms of covariance values, near to vs. far from the tipping
point, at network distances 0, 1, 2, and 3 (network distance from i to j is 0 if
and only if i = j). In all cases the distributions of covariances appear more broad
close to the tipping point, and for distances 0, 1, and 2 they also appear skewed
to the right. Note the outliers in the distance-0 histogram near the tipping
point, which are the variances of the species that are about to go extinct.

distance changes as the system approaches its tipping point. One way to do this
is the following; for each value of network distance (starting with 0, 1, 2, 3),
plot a histogram of covariances of nodes at that distance, both near to and far
from the tipping point. The result is shown in Figure 11.

Another salient feature in the covariance between two species is each of
their respective degrees. Consider the following: the more mutualistic partners
a species has, the less susceptible it is to fluctuations in the abundance of any
single one of its partners. Hence one could reasonably expect that higher-degree
species covary less strongly with their neighbors than lower-degree species do.
This intuition is borne out in the data, as depicted in Figure 12. This intuition
can (I think) be made precise by an application of the central limit theorem, by
interpreting the mutualistic benefit obtained by a species as a sample average
of its neighbors’ randomly fluctuating abundances.
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Figure 12: Covariance between direct neighbors as a function of the product of
their degrees. Generalist species that interact with other generalist species co-
vary weakly, as indicated by the downward trend. Data are plotted on a semi-log
plot, indicating a roughly-linear dependence of Cov(i, j) on log(ki) + log(kj).

12 Randomizing the Network

Now we report observations of the dynamics on a randomized version of the
original network. We randomize the network by performing a link-swapping
procedure that ensures the degree of each node remains fixed and that there are
no repeated edges or self-loops.

Figure 13 shows an overview of the unfolding of community collapse in the
original network and the randomized network. One notable feature is that in the
randomized network, there seem to be fewer abrupt shifts, either up or down,
of species abundance as a function of population.

To look in more detail at the difference between these two cases, we con-
struct a histogram of ”times” at which species went extinct, Figure 14. In the
present context, ”time” progresses in integer steps from 0 to 200, with each step
corresponding to a decrease in γ0 of size 8/200 (so that γ0 goes from 8 to 0
after 200 time steps). The horizontal axis in Figure 14 is simply a reversed and
rescaled version of that in Figure 13.

13 Varying Nestedness

Here we report results of simulations performed on a family of networks, alike in
shape (number of plants and number of animals), number of links, and expected
degree distribution, but varying in nestedness. To do this we used an algorithm
adapted from [?] (SI).

Intuitively, the network structure linking species together should have an
effect on their overall ability to survive. One may expect [Cai, personal com-
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Figure 13: Overall ecosystem collapse on the original network vs. the random-
ized network.
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Figure 14: Histogram of times at which species went extinct on the original
network (blue) and on the randomized network (translucent green). Note that
in the orignal network there appear to be two groups of extinctions, possibly
aligning with a modular structure of the network.
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Figure 15: Standard deviation of extinction times, plotted against nestedness.
Note the (very noisy) downward trend, indicating that with greater nestedness
comes tighter bunching of extinction events.

munication] that in a highly nested network, species may tend to go extinct
together more so than in a less nested network. To check this, we simply com-
pute the standard deviation of the times at which species go extinct, and plot
this against nestedness Figure 15. However, other measures such as the differ-
ence between the first and last extinction event, the size of the first extinction
event, and the size of the largest extinction event, do not appear to show any
trend with NTC, and we do not show plots of them.

14 Histogramology

Following [BB13], we consider distributions of covariance (and correlation) val-
ues. In [BB13], the authors outline general considerations for a wide class of
dynamics on networks (a class that, unfortunately, does not contain our model)
that show that one should expect the correlations among system variables to be
distributed according to a power law - and moreover, that the exponent of this
power law can be derived from properties of the functions defining the network
dynamics at hand. Similar arguments establish expected power-law distribu-
tions in other quantities related to influence, susceptibility, and spreading of
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perturbations.
Since, as mentioned, our model does not fall properly in the class considered

by [BB13], we cannot directly apply their method to compute what we should
expect our power-law exponents to be. We can, however, simply measure them!

I should state a strong caveat here: [BB13] considers correlations, which
(they claim) is equivalent to a matrix of derivatives Gij = |dxi/dxj |, where
the derivative is taken to measure the effect of the fixed-point value of variable
xi in response to an imposed perturbation on xj . However, we’ve found the
most interesting and interpretable things in looking at covariances rather than
correlations.

An illustrative example is given in Figure 16. This figure shows histograms
in a log scale, and so straight lines correspond to power-law behavior. In these
figures, data are grouped in linear-sized bins, hence their unequal widths on the
log scale.

For both the low and high nestedness networks, we see an understandable
difference in the distribution of covariance values near the tipping point vs. far
from it. When the system is far from the tipping point, we see a hump in the
right side of the distribution - this consists (it turns out) of the diagonal entries of
the covariance matrix. That is, these are the variances of the individual system
variables, and all the off-diagonal entries (i.e. the covariances) are smaller in
magnitude.

The situation changes, however, as the system approaches its tipping point
- the distribution of covariance values appears to be approximately a single
power-law, indicating that covariance values have increased to the point of being
comparable with variances. At this point, we do not have a quantification of
this in a precise enough way to talk about a trend with respect to nestedness,
or the robustness of this phenomenon across network instances.

Note that this result is consistent with what was shown in Figure 10, though
at a coarser level of detail. Figure 10 shows side-by-side box plots indicating
the spread of covariance values at various network distances - in the far-from-
tipping-point case, the distance-zero data points are well-separated from the
rest of the points, while in the near-tipping point case, distance-one covariances
are comparable to distance-zero covariances.

15 Analytical Results

Here we report calculations that illuminate the behavior of Equation 2 in various
special cases

15.1 Zero interspecies competition, δ = 1

As mentioned in subsection 8.2, the dynamics are very simple in the case of zero
competition and δ = 1. Upon examination of Figure 2, it is reasonable to guess
that for any given value of γ0, the system has a fixed point in which all species
abundances are nearly equal.
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Figure 16: Histograms of covariance values, near the tipping point (blue) vs. far
from the tipping point (green). Upper panel is a network with low nestedness,
lower panel is a network with high nestedness.
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Indeed, if we have Pi = P and Aj = A for all i, j, then the mutualistic terms
become

NA∑
j=1

γPijAj =

NA∑
j=1

γ0
yij
ki
A = γ0A (47)

and so it is possible to write closed evolution equations for the quantities P ,A.
Averaging the equations for dPi/dt and dAj/dt over i and j, respectively, gives

dA

dt
= A

(
αA −A+

γ0P

1 + hγ0P

)
(48)

dP

dt
= P

(
αP − P +

γ0A

1 + hγ0A

)
(49)

where αP =
∑
i α

P
i /NP , and similarly for αA. For the numerical values chosen

in the simulations described above, αA = αP = a = −0.3.
Due to the symmetry of these equations, we suppose that there is a fixed

point solution with A = P = x > 0, and find that this is true if

hγ0x
2 + (1− γ0(1 + ah))x+ a = 0. (50)

This quadratic equation has either two, one, or zero solutions for x, depending
on the sign of the discriminant. The discriminant changes sign when

(1− γ0(1 + ah))2 + 4ahγ0 = 0 (51)

which is now a quadratic equation for γ0. We find that the discriminant changes
sign when

γ0 =
1− ah± 2

√
−ah

(1 + ah)2
. (52)

Using the numerical values of a = −0.3 and h = 0.1, we find γ0 = 0.73, 1.46,
the latter of which coincides closely with the onset of total ecosystem collapse
in the second part of Figure 2.

We can in fact compute the relevant solution to Equation 50, and plot it
alongside the simulation results. The result is shown in Figure 17.

15.2 Uniform Growth Rate

Here we report results about the system Equation 2 in the case where 1) αi = α
for all i, 2) δ = 1, and 3) βGij = ε/(NG − 1) for i 6= j, βGii = 1, G ∈ {A,P}. This
is effectively the same situation as discussed in subsection 15.1 except that we
allow weak competition (whose strength is governed by the small parameter ε).
What we will demonstrate is that the competition matrix has a strong effect on
the nature of the extinction process on a mutualistic network.

Under these assumptions, there is effectively no difference between any two
species, and so there is a fixed point solution in which all species abundances
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Figure 17: Simulation results together with mean-field solution. Note excellent
agreement.

are equal. This common value, x, of abundance satisfies a quadratic equation
with the other parameters of the model:

0 = α− (1 + ε)x+
γ0x

1 + hγ0x
(53)

0 = −hγ0(1 + ε)x2 + (γ0(1 + αh)− (1 + ε))x+ α (54)

Applying the quadratic formula, we get

x =
1 + ε− γ0(1 + αh)±

√
(γ0(1 + αh)− (1 + ε))2 + 4αhγ0(1 + ε)

−2hγ0(1 + ε)
(55)

Treating all parameters as constant except for γ0, we see that there are
either 2, 1, or 0 solutions for x, depending on the sign of the discriminant.
The discriminant is a concave-up quadratic function of γ0, which means that
for large enough γ0, the discriminant is positive and there are two solutions for
x. These solutions x± meet and annihilate at the value of γ0 that makes the
discriminant zero, i.e. the solutions to the equation

0 = γ2
0(1 + hα)2 + 2γ0(hα− 1)(1 + ε) + (1 + ε)2 (56)
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Figure 18: Depiction of the effect of competition on the stability of the state
in which all abundances are equal. Irrespective of ε, there are two branches
of solutions in which all species have equal abundance, and they merge at a
value of γ0 indicated by the vertical red line. However, for ε > 0, the upper
branch becomes unstable before it meets the lower branch, contrary to a typical
saddle-node bifurcation.

which are

γ0 = (1 + ε)

[
1− αh± 2

√
−αh

(1 + αh)2

]
= (1 + ε)

(
1±
√
−αh

1 + αh

)2

(57)

At this point, the situation resembles a standard saddle-node bifurcation.
However we will show that it is not always true that one branch is stable and
the other is unstable up until their meeting point. Indeed, the stability of this
fixed point is governed by the largest (real part of an) eigenvalue of the Jacobian,
which in this case is (in block form)

J =

[
xβP γ0x

1+hγ0x
ΓP←A

γ0x
1+hγ0x

ΓA←P xβA

]
(58)

where ΓP←Aij = yij/ki. At this state we don’t have analytical results on the
spectrum of J as a function of ε and γ0, but we do have numerical evidence that
an eigenvalue of J crosses the imaginary axis at a value of γ0 greater than the
value at which the two branches meet. The situation is depicted in Figure 18.
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This result indicates that the competition matrix has a strong effect on the
spectral properties of the Jacobian, and hence on the early warning signals
one should expect prior to a tipping point. This is philosophically aligned with
recent work such as [GLHBHM17], which establishes that dependencies between
the competitive network and the mutualistic network have a nontrivial impact
on the carrying capacity of a mutualistic ecosystem.
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Part IV

Reframing
Here I’m going to describe some ways to reframe the project at hand.

What we really wanted to get at all along was the connection between the
topology of mutualistic networks and the dynamics of spreading processes on
them, such as cascading extinction events. We thought that we could get some
insights into this at the level of SDE models; that line of inquiry hasn’t produced
the sort of insight we were looking for.

Instead, we’ll study highly simplified model of spreading process on simplified
networks. In particular, we choose the Watts threshold model, because it is
very simple and captures certain salient features of extinction cascades: that an
extinction occurs when a species loses too many of its partners.

16 Random network models

For the networks on which to study a threshold spreading model, we consider
primarily two models, both designed to produce networks that are simultane-
ously nested and modular.

First is a model described in [?], based on previous work in [GN05], [OH08],
and [SRG07]. The model depends primarily on two free parameters, pcomp

and pnest, determining the extent of modularity and nestedness, respectively.
Specification of the model also requires specifying a partition of the nodes of
each guild, and a level of connectance (i.e. fraction of possible links that are
present).

The sampling algorithm is as follows:
Let NA and NP be the number of animal and plant species, respectively. For

each animal (plant) species i (j), draw a sample from a power-law distribution
with exponent (say) -2, PAi (PPj ). This number will represent that node’s
expected degree.

Given the desired connectance C, let NL = bCNANP c be the total number
of links. While total number of links is less than NL, do the following:

1. With probability pnest, choose an animal species i with probability pro-
portional to PAi . With probability 1 − pnest, choose an animal species i
with uniform probability (i.e. probability 1/NA).

2. With probability pcomp, choose a plant species j from the same module as
animal species i. With probability 1− pcomp, choose a plant species from
among all plant species.

3. With probability pnest, choose j with probability proportional to PPj , and
with probability 1− pnest, choose j with uniform probability.

4. Add a link between nodes i and j if one does not already exist. Otherwise,
do nothing.
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Figure 19: Comparison of the random network models described in [PBHTSR18]
(left) and [TF10] (right). Both networks have the same number of modules with
the same shapes, the same total number of links, and the same fraction of links
within modules vs. between modules.

To account for possible asymmetry due to the order of selecting nodes, do the
above procedure with probability 1/2 and do the opposite (i.e. interchange plant
and animal guilds) with probability 1/2.

Another method is described in [PBHTSR18], and is designed to produce
network structures that are modular and nested. See their text for a full de-
scription: a sample using their method is shown in Figure 19.

17 Dynamics

Now we describe the dynamics that we put on the networks defined above.
Let N be the total number of nodes in a network and let A ∈ {0, 1}N×N

denote its adjacency matrix: Aij = 1 if and only if nodes i and j share an
edge, and we assume all edges are undirected and unweighted. Let ki =

∑
j Aij

denote the degree of node i.
Let u ∈ {0, 1}N denote the state of the system; ui = 1 if species i is present,

and zero otherwise. We introduce a dynamic on u according to the rule

ui(t+ 1) =

{
1
∑
j Aijuj(t) > θki and uj(t) = 1

0 else
(59)

where θ ∈ [0, 1] is the threshold. In words, a species can only survive if at least
some critical fraction of its mutualistic partner species are present. Note that
in general θ could be different for each species, but we assume here that it is
the same.

This dynamic can happen on any network; in our setting we are interested
in the case when it is bipartite, and shows a nested and modular structure.

The dynamics are as follows. Let u ∈ {0, 1}N
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